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COMPUTATIONAL EFFORTS - INTRODUCTION

During the first year of the joint ONR-RR turbine project, computational

efforts have concentrated on the areas of minicomputer-array processor de-

* "velopment and two-dimensional computer code algorithm development. 'This

annual report is intended to be a comprehensive review of the work #erformed

in these areas as well as an analysis as to what the information(gained

during this year implies for the future direction of the project- The

particular areas covered are: 1) a detailed review of the minicomputer-array

processor performance and prospects, 2) a summary of the status and importance

of boundary treatments for implicit numerical algorithms, 3) a summary of

the status of grid generation efforts for turbine type geometries and 4) a

review of work done to analyze the application of MacCormack's new implicit

time marching scheme to turbomachinery geometries. In addition a computa-

S-.. tional development plan for the next three years is presented, and the

present status of test examples for the two-dimensional analysis code is

reviewed. -

The minicomputer-array processor review largely appeared in an earlier

quarterly report and is repeated here for completeness. The work on implicit

boundary treatments was presented at a boundary condition symposium conducted

at NASA Ames Research Center in June 1981 and an expanded version is expected

to be published in the Journal of Computational Physics. The analysis of

the new MacCormack scheme was presented at the AIAA 20th Aerospace Sciences

- Meeting in January 1982 as AIAA Paper 82-0063 and has been submitted to the

AIAA Journal for publication. Technical papers reviewing the computer

*i analysis and the results of the grid generation scheme are under preparation.
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MINICOMPUTER-ARRAY PROCESSOR PERFORMANCE

Summary

One important portion of the original ONR-RR turbine project proposal

was the development of a minicomputer-array processor system with sufficient

memory and processing capacity to support the entire computational effort.

Since the success of the computational project largely depended on the

development of this computer system, it was imperative to establish early

on the capacity of the purchased system. This report section reviews the

development of this system and demonstrates that the original system com-

putational speed goals have been met. The original computer concept used

host computer main memory to provide storage for the three-dimensional

problem data matrix, but the widespread introduction of the 64K bit memory

chip has made it possible to specify a backup mass memory system which

greatly expands the storage capacity while reducing its cost.

Historical Perspectives

It is easy to understand why existing general-purpose computers lack

sufficient computing power for three-dimensional computational fluid dynamics

calculations. General-purpose computers are based on a von Neumann type

architecture, in which (a) a single processor is used, (b) a single,

separate memory is used, and (c) program and data are stored in the same

memory so that, at least in principle, programs can write other programs.

These principles were formulated at a time when both arithmetic and logic

units (ALU) and memory were expensive (hence only one of each is used, and

data and programs can share a single address space), but data communication

on internal bus lines was cheap (so that there was little if any penalty in

separating the processor and memory). The large expense of high-performance

machines made it imperative that all machines be general purpose, that is,
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be able to perform well on a large variety of algorithms. However, these

von Neumann architectures are all limited by two bottlenecks: the single-

sequence bottleneck and the memory reference bottleneck.

The single-sequence bottleneck arises because only a single ALU or

processor is incorporated. This restriction makes programming easier

(indeed it has influenced the very nature of virtually all widely used

computer languages), but it forces computations that could in principle

be done simultaneously, to be done one after another. Heroic efforts

have been made to eliminate this bottleneck, and techniques in common use

in high performance computers include simultaneous fetch of next instruc-

tion from memory, and pipelined high-speed arithmetic operators. These

approaches offer higher computation speed at the expense of greater hard-

ware cost and complexity. A few machines have attempted to circumvent

this bottleneck by incorporating two or more ALU's. In most cases such

machines have given disappointing performance when more than four ALU's

have been used, since having n ALU's does not reduce computation time by

a factor of n. This is because techniques for unfolding or ("vectorizing")

algorithms are only partially successful, and the ultimate computational

speed is determined by those instructions that are not done in parallel.

Thus even a relatively innocuous statement that, on a single-sequence

machine, would not take much time, may end up on a vector machine being

done on one ALU while all the others are idle. Perhaps the most successful

vector machine is the CRAY-I, and in that case much of the success is due

to the speed of the individual ALU's rather than the parallelism. If a

vectorizing compiler is used, the CRAY-l can routinely achieve 30 MFLOPS

(million floating-point operations per second), which is considerably below

.• °• .- o. .. ... . ". . , ... . . . . . .. .
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its potential of about 150 MFLOPS. In order to get maximum performance

from the CRAY-1, a programmer must be aware of the detailed timing

assumptions in the architecture, and then program so as to use many

functional units concurrently. He must also use the concept of chaining

vector operations, and deal with the fact that the preferred vector length

is 64.

The memory reference bottleneck of von Neumann type computers arises

because a single memory is used. Both instructions and data are fetched

from or written to this memory. Typically the bandwidth of the memory

communication path is relatively small, either because of slow memory

access time or long distance between the memory and the ALU. In addition,

the ALU may have to remain idle until the memory fetch is complete. A

variety of successful techniques has reduced the impact of this bottleneck

in high-performance computers. First of all, the principle of space

locality is used to predict what memory locations will require access

next. In practical problems a large percentage of memory accesses occur

very close to the previous access. Thus if large segments of memory

(pages) are brought into relatively fast memory, in a large majority of

cases the next memory location required will already be in "fast" memory.

The techniques of cache memory and paging are based on this principle

and are very successful. In fact, practical computer systems have a memory

hierarchy with at least four levels--magnetic tape (quite slow, massive

size, used for day-to-day storage); disk (faster but smaller, used for

most general purpose user-specified storage); cache (much faster, quite

small, not usually under user control); and ALU registers (very fast, not

4 many of them, located close by, used for storage of data from one instruction

to the next).



Minicomputer-Peripheral Arithmetic Processor Concept

The design of a fluid dynamics simulator of sufficiently high power is

quite difficult within the constraints imposed by these bottlenecks, and a

common thread of the unconventional architecture concepts which have been

considered is the attempt to avoid the von Neumann constraints by introducing

. parallelism on a modest or massive scale. In the minicomputer-peripheral

arithmetic processor concept, a general purpose minicomputer is used to

manage a memory hierarchy and data flow for a special purpose, high capacity

ALU. A typical minicomputer-peripheral processor layout is illustrated in

Figure 1. Here a general purpose minicomputer with substantial main memory

and large moving head disk drives supports the peripheral arithmetic pro-

cessor. Present computer hardware cost trends indicate that the host mini-

computer should be a 32 bit supermini (Digital Equipment Corporation VAX

*11/780 or Perkin Elmer Corporation 3240 for example] with one to two million

bytes of main memory. Smaller and less expensive computers could also serve

as host machines, but the most cost effective choice appears to be a 32 bit

supermini.

The host minicomputer chosen for evaluation was a 32 bit minicomputer

produced by Perkin Elmer, the PE 3242. Important architecture features of

this machine are: 1) a high data rate internal memory bus, up to 10 million

32 bit words/second transfer rate; 2) four DMA (direct memory access) ports,

2.5 million words/sec transfer rate on each port; and 3) a cache memory

system well suited to internal data shuffle operations. The effective

memory access time is 500 ns, the cache cycle time is 200 ns, and the CPU

cycle time is 260 ns. Floating point hardware multiply times are approxi-

4; mately 1 ps for 32 bit single-precision results. A block diagram of the

P.E. 3242 is shown in figure 2.

o
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The peripheral arithmetic processor chosen for evaluation was the

AP-120B array processor produced by Floating Point Systems, Inc. of Oregon.

Floating Point Systems is the dominant manufacturer of such peripheral

processors, and the AP-120B internal architecture is an excellent example

of the potential computational advantages of abandoning the von Neumann

style architecture. The AP-120B consists of a number of synchronous,

parallel logical units, each operating under stored program control. A

block diagram of the machine is shown in Figure 3.

The parallel structure of the AP-120B allows the overhead of array

indexing, loop counting and data fetching from memory to be performed

simultaneously with arithmetic operations on the data. Stored programs

and data each reside in separate, independently addressable memories to

reduce memory accessing conflicts. Independent floating point multiply and

adder pipelines both allow operations to be initialed every machine clock

cycle or 167 ns. Address indexing and counting functions are performed by

an independent integer arithmetic unit. For certain computations, such as

a Fast Fourier Transform, the computation rate is near that of a floating

point multiply and add result every clock cycle or 12 MFLOPS (millions of

floating point operations per second). The floating point data word is

38 bits long.

The AP-120B is connected to a PE3242 DMA port and this processor con-

tains 2048 (2K) words of program storage memory and 32K words of 333 ns

cycle time main data memory. The AP-120B cannot be considered a general

purpose scalar or vector arithmetic processor. Achieving good performance

requires careful, custom hand coding of critical code sections, and the

"S limited function unit parallelism constrains the type of algorithm that

can effectively use the machine. For example, a memory read instruction

0e
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may be initiated only every third machine cycle so that true vector operations

Ulike those available on the CDC STAR-205 are not possible. References to

the floating point register file (data pad X and Y) are not sufficiently

flexible to overcome this difficulty. To optimize the operation of the

.. AP-120B, it is necessary for the programner to "look ahead" and initiate

memory reads prior to the actual time values from data memory are to be

used in a calculation. The burden on the programmer to be cognizant of

I machine architecture is not greatly different from that of programmers on

the CRAY or CDC STAR computer.

Numerical Solution Scheme

In order to properly focus the AP-12bB architecture studies, the

system was evaluated for use with a demanding algorithm, in terms of

memory size and complexity, which might be suitable for solving the three-

dimensional, unsteady Reynolds averaged Navier-Stokes equations. The

numerical method is one due to Beam and warming (1) of NASA Ames Research

Center and may be generally described as an approximate factorization

scheme for vector sets of convection-diffusion equations. This scheme

may be represented as:

(I + L ) (I + L)(I + L )AUn RHSn (1
x y z

In this representation, I is the identity matrix, Lx , Ly, L are

x z

linear, finite difference operators in the x-y-z coordinate directions,

SUn is the change in solution state vector from time step n to time step

. n+l, and RHSn is, in effect, the steady-state solution to the Navier-Stokes

equations at time level n. The computational solution proceeds as:

I'
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(I + Lx)AU* = RHSn  Step 1 (2)

(I + L )AU** - AU* Step 2 (3)

(I + L")AU AU* Step 3 (4)
z

Un+l  T Step 4 (5)

where steps 1, 2, and 3 involve calculation of parameters, evaluation of

the RHS, and solution of a large set of sparse, simultaneous, linear

equations. The equation set to be solved is block tridiagonal and is

solved by LU decomposition. The size of I and other submatrices appearing

is (m xm) where m is the number of vector equations to be solved, m= 5 for

ordinary problems. The number of simultaneous equations is m times the

number of finite different nodes along a physical direction. Details of

the finite difference algorithm are presented in reference t2_.

The characteristic operation of this scheme is the solution of a large

set of simultaneous equations, shown below in their banded matrix form.

AO  B0  C0  0 0 ... 0 AU0  DO00

A B C 0 0 ... 0 AU D1 1 1 1

O A2  B2  C2  0 ... 0 AU2  D2

. .(6)
0 0 0 ADj.. . : J-2 -2

A B Cj. 1J -1 3-1 3j-1 3u-1 3-1

0 0 ... A3  B3  C3  AU3  Dj

Here the block matrix elements, A,, Bi, C, are themselves mxm whose

elements depend only on the solution at time level n. D. is a vector of

length m that depends either on the soluticn at time level'n or is known

from the previous approximation step.

.
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When using a von :ieumann style computer having a single ALO and a

limited amount of local register storage, the sequence of operations to

find a solution is immaterial, and it may be found by:

1) Computing the RHS function of equation (2) at all node points

and storing in main memory.

2) Solving the equation system (2), for each x coordinate line.

This operation requires that matrix coefficients A., B. and C. be calculated

and a matrix equation like equation (6) be solved. The equation system is

solved in two sweeps by LU decomposition. The forward sweep appears as:

E. G. (-B (7)

F. G. (D. - C.F. 1) (8).- ) J J J J-

G .CE_ 1 + Aj (9)

and the backward sweep would appear as:

Au j E juj. + F (10)

where G"I indicates the inverse of G.. Of course, for numerical calcu-
'" -l
lations on a conventional computer, G. should never be found; rather,

the elements of E. are solved for directly. With cbrtain types of computer

hardware, it may be advantageous to compute G-i

3) Solving the matrix equations (3) for each y coordinate grid

line as in step 2.

4) Solving the matrix equations (4) for each z coordinate grid

line as in step 3 and updating the solution from time level n to time level

n + 1.

A reference problem with a finite difference grid of 50 x 50 x 100 will

be considered. At each grid node about 20 floating point words must be
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stored for a problem data storage requirement of 5.0 million words. For

purposes of total timing estimates, it was assumed that 500 iterations or

* time steps would be required to compute a steady state solution.

It is felt that the solution time per iteration for the Beam and

Warming algorithm is typical of many other algorithms and that the block

. tridiagonal matrix structure is typical of many implicit solution schemes.

Thus solution times for this algorithm should be a good guide for hardware

*performance on other algorithms.

Two Dimension Test Computation - Host Com2uter Only

The Beam and Warming algorithm described in the previous section was

first tested on the host minicomputer in a FORTRAN only version. For the

two-dimensional test solution, the finite difference operator sequence

appears as:

(I + L ))U* = RHSn Step 1 (11)

(I + L)U Step 2 (12)
y

Un+l Un + AUn  (13)

The performance of the present FORTRAN code is illustrated in figure 4

for a finite difference grid line of length 50 nodes. Such grid line re-

quires 1.65 ms/node to compute the RHS function, 0.632 ms/node to compute

the matrix coefficient and 2.17 ms/node to solve the matrix equation. A

test problem of size 50x 100 nodes would require 36 seconds per time step

and 5 hours for 500 time steps.

Array Processor Test Calculation

The most difficult computational part of the test calculation is the

calculation of the coefficients and the matrix equation solution. This

portion of the calculation was moved to the array processor, and the result

............



is illustrated in figure 5. The .HS function still requires 1.65 ms/node

to compute, since it was left in the host computer, but the matrix solution

now requires only 0.34 ms/node rather than 2.80 ms. This result is a

speed-up factor of approximately 8.2. An overhead factor of approximately

6 ms/line is incurred. With the RHS function calculated in the host computer,

a time step now requires 20 seconds, and 500 time steps requires 2.7 hours.

A total speed-up factor of 3.2 was achieved with just the coefficient and

matrix equation solution done in the array processor. When the RHS cal-

culation is moved into the AP-120B, it is estimated that a time step will

require 5.46 seconds, and 500 time steps will require 45 minutes.

AP-120B Architecture Considerations

The first test calculations demonstrated both the advantages and the

restrictions of the AP-120B architecture. These limitations are best

explained by considering a vector operation which occurs often in CFD

simulations:

A n+l An Anf A

U. t. ln+ a - ; j= to J (14)
j j+l -

* A vector of length J is updated using a central difference operator multi-

plied by a variable coefficient. Figure 6 shows how this operation could

be carried out using multiple, chained pipelines and multiple register

files. With such a configuration one final result, U , recuiring 2 add

operations and 1 multiply operation, can be obtained each machine clock

cycle. The resulting computation rate is 18 MFLOPS (millions of floating

point operations per second).

The AP-120B has only a single add unit and a single multiply unit and

only a limited amount of register file storage, 64 words, so that chained

pipeline operation is not possible, The best computation rate that can be
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maintained on the example, equation (10), is 3 multiply operations and 6

add operations every 6 clock cycles. This computation rate is 9 MFLOPS.

The major architecture constraint of the AP-120B is the main data

memory access time. Main data memory, or table RAM, cannot be simultaneously

read from and written to, and only a single word can be read or written per

clock cycle. The example algorithm requires 3 memory references per final

result. For standard speed memory (333 ns cycle time) a memory reference

can be initiated only every third clock cycle so that the example calculation

is memory reference limited. Each final result requires 9 clock cycles for

a computation rate of 2 MFLOPS.

In principle, the use of interleaved, fast memory (167 ns cycle time)

would allow a 9 MFLOP computation rate to be maintained, but each memory

reference address must be generated through S-Pad operations rather than

through hardware. In practice, it appears that maximum computation rate

that can be maintained is about 4 MFLOPS for general algorithms. Such a

sustained computation rate is comparable to best CDC7600 speeds and is

impressive for a machine whose hardware cost is around $60,000.

An interesting result of the memory reference limitation is that the

sequence of operation in the block LU decomposition,* equations (7) through

(10), can be critical. In this sequence, the number of temporary results,

2
A. for example, scales as m , where m is the number of conservation equations.

If these coefficients, once calculated, were written to main data memory,

the memory reference limitations would be much more important. The inter-

mediate results, E. and F., are needed later in the backward sweep,
- J

equation (10), and should be written to table RAM. In more general terms,

effective use of the AP-120B requires the prugrammer to identify and exploit
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local algorithm parallelism, concurrent calculation of coefficients (A.,"J

Bi, C.) and storage of results (E and Fj) to minimize memory
j jj-1 j-1

references.

Memory Hierarchy Considerations

The two-dimensional test calculation and architecture considerations

showed that a large amount of AP-120B main data memory is not required to

sustain calculations at the maximum plausible rates. Referring to figure 5,

the overhead time needed to transfer data to and from the AP-120B is small

and can be made negligible. The overhead results mainly from a poor Perkin-

Elmer Floating Point Systems interface (hardware and software), and it

appears that this overhead time can be reduced to less than 5% of computation

time for problems of modest size.

If the AP-120B can work effectively on small amounts of data, problem

data matrix storage can be maintained on a memory hierarchy rather than in

the AP-120B main data memory. The hierarchy considered is to maintain the

full data matrix (data matrix is of 4 to 40 million floating point words)

on a mass storage device at all times; to maintain small sections of the

data matrix, of order 150,000 floating point words, in the host computer

memory for algorithm processing, and to transfer only a few thousand words

to the AP-120B data memory for detailed computational tasks. For low cost

systems, the mass storage device would be a moving head disk, while, for

higher performance systems, the storage device would be a semi-conductor

mass memory system.

For either mass storage device, segmentation of the problem matrix on

the memory system is an important consideration; the segmentation considered

is shown in figure 7. It is not known yet if this is the optimum segmentation,
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" but it is felt to be near optimum for small main memory size. The data

base is arranged such that the smallest memory system addressable element

is a (5x 5 x 5) node block containing 5 x 5x 5 x 20 floating point words.

The smallest working set to be in host computer memory is three axial data

planes composed of 300 (5 x 5 x 5) sub-blocks.

When an axial data plane set is in memory, the first two operators

may be executed on one axial plane:

(I + L )AU* = RHSn  (15)

(I + L )AU** = U (16)

y

This axial plane must then be returned to the memory system and a new plane

read in. When 100 axial planes have been processed, an axial grouping of

20 * (5 x5 x5) blocks is read in and the last operator executed:

(I + L )AUn = U** (17)

Un+l = Un + AUn 18)

One full iteration is completed when 100 sets of this last axial grouping

have been assembled and processed.

This data structure implies a large quantity of data movement per

solution time step since each axial plane must be moved from the memory

=- - system to the host computer memory to the AP-120B back to the host computer

memory and back to the memory system. This process must also be repeated

for each time step, which means that for the reference grid 32 MWords must

be moved for each solution time step. The host computer selected for

evaluation, the Perkin Elmer 3242, is probably unique in a commercially

available minicomputer in that its internal data base structure is capable

of handling this data quantity at high speed. Under worst case conditions,
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the data bus structure can support an aggregate data rate of 10 MWords

per second. Thus the entire data shuffle operation need require only 4

seconds real time if the AP-120B and the memory system can supply and

accept data at an adequate rate.

The AP-120B can perform block data transfers at the rate of 1 word

each clock cycle or 6 MWords per second. However, it is expected that

only a small amount of data will be transferred to or from the AP-120B

at any one time, and the I/O time will be dominated by the overhead time

to initiate a transfer operation. This overhead time is estimated to be

about 2 ms per transfer for a total overhead time of 25 seconds per time

step on the 50 x 50 x 100 reference grid.

As can be seen from these simple considerations, the overhead time

in setting up the AP-120B data transfers is 5 times larger than the host

data transfer time. However, the overhead time does imply a minimum vector

length, which does depend on the numerical algorithm complexity, below

which no gain is made by using the AP. For the test algorithm, equation

(14) and a 2 ms overhead, a minimum vector length of about 300 is required

if the host computer can perform floating point operations in an average

time of 2 4s. A 2 4s average computation time is quite generous for the

host computer considered.

This type of simple operation count, however, seriously overestimates

the importance of AP-120B overhead since computational fluid dynamics

4i problems are characterized by the fact that coefficient calculations, a.

in equation (14), are complex algebraic functions of the current solution

vector. For example, it appears that the minimum time to perform the block

tridiagonal inversion is about 0.2 ms per node for the two-dimensional case.
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For the overhead to be 10% of the calculation time for just the block in-

version requires a vector length of 100. If the calculation time for the

coefficients A., B., C. is also considered, the vector length for 10% over-

head time falls to 50, and it falls to 25 if the RHS calculation is con-

sidered. For three-dimensional calculations, the minimum vector length for

10% overhead is as low as 5 or 10. It is also to be remembered that the

10% oferhead time is about 1% of the time required to do the calculation

on the host computer.

The introduction of 64K RAM VLSI memory chips has made the concept of

large, fast, inexpensive backup memory systems very attractive. Several

vendors now supply memory systems made up from these chips complete with

power supplies, error correction and custom interfacing designed as moving

or fixed head disk replacements. A particularly interesting system is the

memory system 3000 sold by Motorola Inc. which contains a maximum of 32M

Bytes in a single chassis. A block diagram of this system is shown in

figure 8.

The 64K RAM chips are arranged on 16 memory cards which are individually

connected to an internal memory bus. The memory address controlled (ACC)

has parallel access to all 16 memory cards, thus making available on the

user bus 16 72-bit words each 500 ns cycle. In block transfer mode, this

structure results in a 64M Bytes per second transfer rate. In random access

mode, the data transfer rate is 16M Bytes per second. The maximum transfer

of the host computer interface channel is 10M Bytes per seccnd so that the

Motorola memory system can supply data in the random access mode faster

than the host computer can accept it.

* An overhead or setup time will be required to initiate a transfer data

between the memory system and the host computer, but the total overhead
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time should be small compared to the AP-120B overhead time. Memory system

read/write requests will be initiated for fewer times than I/O setups for

the AP since the memory system will be used to store the data blocks illus-

trated in figure 6. These blocks are broken down to individual grid lines

to transfer to the AP.

Hardware Cost Estimate

The hardware costs for the host computer with 2M Bytes main memory, a

300M Byte moving head disk and DMAI interfaces is $200,000. The hardware

cost for AP-120B with 32K words main data memory (333 ns cycle time) and

P.E. 3242 interface is $65,000. The Motorola memory system will cost

approximately $90,000 for 16M Bytes storage and perhaps $20,000 for the

custom interface required. The total hardware cost for a minimal system

is $375,000.

Price--Performance Estimate for Reference Grid

The two-dimensional test codes allow a rough estimate of the system

performance on the reference grid problem. The AP-120B calculation time

without consideration for overhead time is estimated to be 0.4 ms per mode,

based on the two-dimensional simulations, which yields a calculation time

of 41 hours. Assuming a 10% overhead time gives a tbtal computation time

of 45 hours. When the two-dimensional test codes were constructed, the

memory reference limitations of the AP-120B were not properly understood,

and it is estimated that the calculation time can be reduced by a factor

of two. This saving results from not storing the coefficients, A., B., C.

in equations (6) through (10) in main data memory. The estimated computation

time on the reference grid is then 23 hours. The average computation rate

is approximately 3 MFLOPS with a total hardware cost of $265,000.
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A minimum cost system would replace the semiconductor memory system

with the moving head disk which increases the total computation time by

introducing the average disk seek time and slower data transfer rate into

the calculation. This overhead time is roughly estimated to 24 hours and

is not easily overlapped with AP-120B calculation time. A total computation

of 47 hours is estimated when storing the solution data matrix on disk.

A maximum performance system would use the P.E. 3242 base structure

to drive 4 AP-120B units. Since all calculations along grid lines can be

made independent, the total computation time can be reduced by a factor of

four. The total computation time would then be about 6 hours. The average

computation rate would be about 12 MFLOPS with a total hardware cost of

about $570,000. The spectrum of price-performance is illustrated in

figure 9.

Analysis and Discussion

One major factor leading to exceptional performance of the minicomputer-

array processor combination is a good match between operating speeds of

different system devices when the mass memory system uses the 64K bit

MOS memory chips. The critical weakness of present supercomputers is in main

data memory costs and communication strategies. In 'hese machines main

memory is made up of fast but expensive ECL (emitted coupled logic) chips

which still require complex communication strategies to generate enough

memory access bandwidth to keep pace with arithmetic processing. At the

K reduced pipeline speeds of the AP-120B, low cost MOS memory chips with

v - simple communication strategies easily provide the needed memory access

bandwidth. The balanced minicomputer system cost is reduced to the point

that dedicated systems can provide larger memory sizes than available

supercomputers.

.. .
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Figure 6
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PROBLEM DATA MATRIX STORAGE EXAMPLE
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Figure 8

MOTOROLA MASS MEMORY BLOCK DIAGRAM
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BOUNDARY TREATMENTS FOR IPLICIT SOLUTIONS TO EULER AND NAVIER-STOKES EQUATIONS

Summary

The importance of boundary treatments for implicit algorithms was

greatly underappreciated until recent work by Yee, Beam and Warming (4]

appeared. This work used a modal stability analysis originated by Kriess

V..- (5] to analyze the effect of several different boundary treatments on

algorithm stability. This theory strictly applied only to linear equations

with constant coefficient in one space dimension, and a computational study

was conducted to test its relevance to realistic Euler or Navier-Stokes

computations. It was found that for both explicit and implicit boundary

treatments, it was possible to compute solutions with time steps 50 to

100 times explicit time limits while retaining the ability to choose rather

arbitrary initial conditions. An even more important computation result

which was observed is that while large time step sizes may be used, the

largest convergence rates occur at relatively small time step sizes. For

the two-dimensional test cases considered, the best time steps were of

order 10 times the explicit limits. Since the present implicit codes

require more than 10 times the operations per time step, the convergence

rates of the implicit codes must be improved before they can be considered

superior to the explicit algorithms.

• a
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BOUNDARY TREATMENTS FOR IMPLICIT SOLUTIONS

TO EULER AND NAVIER-STOKES EQUATIONS*

W. T. Thompkins, Jr.
R. H. Bush

Massachusetts Institute of Technology

INTRODUCTION

Implicit time marching schemes like those of Beam and Warming (11,

Briley and McDonald [2], and MacCormack (1980) [3] generally have not been

as robust as would be expected from a stability analysis for the pure initial

value problem. Recently, Yee, Beam and Warming [4] illustrated that a more

general stability analysis, which includes the effect of boundary conditions,

may explain some of the seemingly anomalous behavior of these schemes. The

major theoretical basis for this type of modal stability analysis was

established in a series of papers by Kriess [5,6], Osher (7,81 and

Gustafsson et al [9].

Yee as well as Gustafsson and Oliger [10] considered the effect of

inflow/outflow boundary condition formulations on the stability of a class

of numerical schemes to solve the Euler equations in one-space dimension.

The characteristic feature of a subsonic inflow/outflow boundary is that

a priori boundary values may be specified for only some problem variables

while remaining boundary values must be determined as part of the solution

process. Yee demonstrated a rather large disparity in stability bounds

between the use of explicit or implicit extrapolation procedures and in

general demonstrated that implicit extrapolation procedures had the least

restrictive stability bounds. The intent of this work is to explore com-

- putationally the implication of this work for several two-dimensional Euler

*and Navier-Stokes simulations.

*This work was partially supported by NASA Lewis Research Center under

NASA Grant NAG 3-9.

S.
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NUMERICAL PROCEDURES

The two-dimensional Navier-Stokes equations may be written in vector

"" form as

au + 3E 3F 3R +S
a xt ax + aT y

where

U= p E Pu F= pv

2
pu Pu + p puv

Iv OVU PO V2 + p

u(E +p) v(Et +p)

R- 0 S= 0

xx xy

T T
xy yyP..S

R4 S4

and

1u 2  v2Et ~ff(e +7 -Y u + _vv

au ax= (\+ 2 i) ax ay

xy = a +x

av au= (X + 21J)y x - XI-
ay y ax

R.=u T + vT + up 1 ( Y -) - l 1a 2

4 4 xx xy r ax

S= UT + vT + jP (Y -1 )

4 XY 'j r
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The strong conservation law form may be retained under a general

coordinate mapping as illustrated in Viviand (11]. All cooputations to

be described were conducted in a mapped computational domain but numerical

r. and boundary condition procedures will be described in the simple two-

*- dimensional geometry shown in figure 1 for simplicity.

A 1979 paper by Beam and Warming [12] outlined a solution scheme

*- for systems of equations of the form (1) which includes most numerical

schemes for which the modal boundary condition analysis has been conducted.

This scheme uses the well developed methods for ordinary differential

" equations as a guide to developing numerical methods for partial differential

equations. The scheme presented combines Linear Multistep Methods, local

linearization, approximate factorization and One Leg methods. The scheme,

a generalization of the scheme presented in reference [1_, solves for a

variable Q(E)u which is equivalent to AUn in the class of schemes represented

by the earlier paper. The earlier scheme is somewhat easier to understand

n
*. as AUn is just the change in the solution from time level n to level n +1,

*while p(E)u is a more general time differencing formula.

The solution schemes chosen are implemented as:

1 +L" n )AU* = 5 n (2)S(I + Ly=R~ 2
y

n n *(I + L )AU = AU (3)
x

n+l n n
U = U + U (4)

4 where

n.
RHS is very nearly the finite difference approximation to the steady

state equations, and

* L and L are linearized finite difference operators representing a
x y

particular time and spatial differencing scheme.

S "
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Full details of these operators are contained in Beam and Warming

(1]. If the spatial differencing is taken to be centered, the computational

form of either equation (2) or (3) appears at each interior point as:

n n n n n n n
A. AU + B. AU. + CAU. = D (5)
1 i a. a a +1 i

where A,, B., and C are 4 x4 matrices, known at time level n, D is
wn B i

the right-hand side vector at node point i known at time level n, and U[
I

is the unknown vector at node point i. The boundary points will be assumed

to involve only the nearest two points in the x direction.

An Au+BnA nA =D n(6
A0 AU0+B 0 11+C 0 AU2 D0(6

The restriction to extrapolation along grid lines, actually transformed

grid lines, is necessary to maintain the block tridiagonal form

and avoids possible instabilities due to skewed extrapolation,

see Abarbanel and Murman 113). Extrapolation procedures

using more than the two nearest neighbors can also be included in the

process to be described.

The full matrix equation appears as:

0 0 0 0 0. 'u

A1  B1 C 0 0 0 AU D

0 A B C 0 ... 0 Au D2 2 2 2 2 (7)

0 0 0 AU 2  D

. "A-1Bn c Aun D
A 1l n-i n-i n-i n-i

0 0 A B C AU D
n n n n n

*th
and will reduce to tridiagonal form if the first and n equations are sub-

stituted into the second and the n-it h equations.

"a
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B' C0 0 U1
:: 1 1..D l

A2  B2  C2  ... 0 AU2 D2

0

I (8)

An~ B C AU 2  D-
Sn_ 2  n-2 n-2 n-2  n-2

S ... 0 A' B'Dn-
n-i n-i n-i n-i

where for example

-::,B 1  B1  A A BoL711 10 0

This cumbersome development allows us to show clearly how a large variety

of explicit or implicit boundary forms can be included without difficulty.

BOUNDARY TREATMENTS

Inflow/Outflow Boundary

The finite difference algorithms studied usually require more

boundary values than are required for the partial differential equations

which they simulate. These extra numerical boundary conditions cannot be

set arbitrarily and are usually determined through an extrapolation pro-

cedure. These extrapolation procedures may either be explicit, that is

boundary values needed at a new time are determined uniquely from the old

time level solution, or implicit, that is boundary values are determined

as part of the new time level solution. The analytical boundary conditions

or the extrapolation quantities are usually not conservation variables but

primitive variables and a local linearization is usually required as part

of defining the extrapolation procedure.
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Consider, for example, an implicit, subsonic outflow boundary at

which the local static pressure is specified as a boundary condition, and

all other variables are to be determined by extrapolation. Figure 1 shows

a typical computational grid and defines the subscripts used.

pn+l n (9)=~ l~ given(9

P'n+l P-n+l Pn+l
implicit

Pu =2 Pu - Pu space
extrapolation (10)

Ov Ov. Ov
i,j ij-i i,j-2

In order to complete the boundary formulation, all equations must be ex-

pressed in delta form and in terms of conservation variables. For the

total internal~energy this may be done through its definition:

Et + ((Pu) 2 + P 2

(y-1) T
Since the relations between conservation variables are nonlinear, some

linearization step will be necessary before the boundary condition formulation

may be used. we choose to introduce our linearization step here as:

=E n+l En) 1 i (u2 + V2-, n  nt (,-I) 2 AD I + unA (pu)

+ vn (pv) + (AuAv, Au 2 , Av2 , ApAu, ApAv) (12)

If terms of order AuAv are neglected, the error is equivalent to the

linearization error of the interior point scheme. We may express the

transformation from boundary variables to conservation variables as:
AU = o =1 0 0 0 1 = w N .

AU 0 1 0 0 Aou (13)

4 AOv 0 0 1 0 APv

2 n
-(u2+V 2) n n 1 AP

2 v (y-

.i4
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We will in general denote transformation from conservative to primitive

variables as

AW. =T. .AU (14)

The extrapolation conditions for AW. are:

iJj

Apu 0 2 0 0 APu 0 -1 0 0OApu
(15)

APV 0 0 2 0OAPv 0 0 -1 0OApv

AP' 0 0 0 0 AP. 0 0 0 0QAP.

or

Wi,J J-1l iJ-l J-2 Wi,J-2 (16)

The final equations relating the boundary conservation variables and the

interior conservation variables are:

AU i,j N Ni%. (P- 1 T iAU iJi +P J-2 TiJ...AU iJ- 21 (17)

or

AUi,J 2 iJ-l A iJ-l i,J-2 AUi,J-2 (18)

Wit te dfiitin f PJ- an PJ-2 given in equation (15), T ij and

T iJ2are. identity matrices.

An explicit outflow boundary treatment was constructed using:

Pn3 n ;given

'n+l

[p P (19)
d Pu = Pu

PV ~ ~ p i, J vI~ -l

and setting G ='- H iJ2 0
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.. In forming equation (10), we choose to extrapolate the local momentum

flux rather than a specific primitive or characteristic variable; choice of

other extrapolation variables would alter only the transformation matrix,

Tij. Extrapolation of the momentum flux is somewhat arbitrary, but its

choice did not affect the accuracy of the computational results to be

presented.

Solid Wall Boundary Procedures

The boundary treatment procedures illustrated for inflow/outflow

boundary are easily extended to cover solid walls in either inviscid or

viscous flow situations. Here,

AU o AP y/T p/T 0 0 AP0, j

Apu Yu/T pu/T 0 0 AT

Apv yv/T pv/T 0 Sq Aq (20)
Yv2

6E1 +1 Y 2 pq 0 Au
t ) y- 2 T T

or

AU = Nn .AW (21)0,j 0,j 0,3

where q is the velocity parallel to the wall and S is the wall slope. For

the inviscid flow examples 3P/3y, DT/Dy and aU/3y are set equal to zero,

while, for the viscous flow examples v, u, and 3T/3y.are~set equal to zero

2
and 3P/ay is equal to 4/3 U(3/3y )(v). All derivatives are evaluated by

one-sided finite difference formulas.

As indicated by Buggeln, Briley and McDonald [141, an ADI type pro-

cedure requires boundary conditions for the intermediate step. Usually the

intermediate step was in the "y" direction and the boundary conditions were

applied as if the intermediate results were physical quantities, that is,

the boundary conditions of equation (20) were applied to the quantities

AU* of equation (2).



38

Explicit wall boundary treatments are generated by applying the

primitive variable form of equation (20) and forcing the correction matrices

to be zero.

NUMERICAL RESULTS

Three geometries were selected for detailed study: an inviscid super-

sonic diffuser with weak oblique shock, supersonic in - supersonic out; an

inviscid supersonic diffuser with a strong normal shock, supersonic in -

subsonic out, and a viscous supersonic diffuser with weak oblique shock

illustrating a shock-boundary layer interaction. Sketches of the geometries

and ideal solutions are shown in figures 2, 3 and 4. Solutions for each

geometry were run to steady state for a range of time step sizes. For con-

venience time step sizes are reported in terms of x and y CFL numbers:

rAt(u + c).~
(CFL ) maximum x(22)

x Ax1).

't(V + c)..
(CFL) maximum (23)

y AYAt j

The time step size was uniform over each calculation which results in

non-uniform CFL and CFL numbers. The maximum value of each is reported.
x y

Sample convergence history plots are shown in figure 5 which shows the log

of the value of the point maximum steady state residual

3S E 3R DF 3 SSSR 7- 7 + 7 y y (24)

- plotted against the iteration number. A solution was not termed stable

-6
unless the residual converged to the machine accuracy, about 1 x 10 -6  All

calculations used a 32 bit floating point word size.
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Each geometry calculation was run with fully explicit extrapolations,

AU= 0, and with fully implicit extrapolations, and the results summarized

in Table 1. The most interesting of these results are shown in figure 5.

At a time step size corresponding to a CFL number of 15 convergence was
x

rapid and very nearly monotonic in time. At smaller time step sizes, the

convergence was slower but nearly monotonic. At a CFL of 45 convergence
x

rates initially appeared to be faster than for a CFL of 15, but the final
x

residual values oscillated significantly about its minimum value. At a

CFL of 90, the convergence rate was substantially slower than at a CFLx x

of 15, and at larger CFL values the solution diverged.

The results for the strong shock diffuser can reasonably be compared

to those of Yee, Beam and Warming [4]. They reported a CFL number stability

limit between 10 and 20, while we found stability limits between 90 and 150.

Thus the analysis in one-space dimension does appear to provide a sufficient

condition for stability, but it may not provide a close approximation to the

stability limit. However, it is essential to emphasize that the largest

convergence rates were observed at time steps corresponding to CFL numbers

of order 10 and that only a marginal computational time advantage for the

implicit boundary formulations was observed.

The results for the shock-boundary layer calculation are very inter-

esting, but they demonstrate a substantial computational advantage for the

implicit solid wall conditions, not for the inflow/outflow extrapolation.

Here the stability boundary and the best convergence rates were observed at

time step sizes corresponding to CFL numbers of 5 to 10. When using thex

implicit wall conditions, the algorithm stability appeared to be independent

of grid spacing in the normal direction as might be hoped. When using the

explicit wall condition, the algorithm stability was limited to a CFL number
y

of about 500.
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CONCLUSIONS AND DISCUSSION

While it is difficult to generalize from only a few test examples, it

is apparent that a better appreciation of the role boundary treatments play

in implicit algorithms has allowed the development of far more robust Beam

and Warming type solvers. For both explicit and implicit boundary treatments,

we were able to accurately compute solutions with time steps 50 to 100 times

explicit time limits while retaining the ability to choose rather arbitrary

initial conditions. In many cases, our limiting time steps for the two-

* dimensional test problems were in fact larger than the limit which a one-

*dimensional analysis would suggest.

The most important computational result we observed was that while an

improved appreciation of boundary treatments did allow very large time step

sizes to be used, the largest convergence rates to steady state were observed

at relatively small time step sizes. For the two-dimensional test problems,

the best CFL numbers were of order 10, not of order 100. One-dimensional
x

test examples showed no such convergence rate behavior. Presently unpublished

analysis by Abarbanel, Dwoyer and Gottlieb (151 has linked this behavior to

S"the approximate factorization form of equations 2 and 3. This effect now

" seems to be setting the time step sizes for our viscqus flow computations

O and new work should focus on methods for overcoming this limitation.

0'

0

0"
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Figure 3. Computational Grid for Strong Shock Diffuser Calculations
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GRID GENERATION EXPERIENCE

Summary

One of the most difficult tasks to be performed as part of accurate

computations for turbine blade geometries is grid generation. As part of

our efforts in grid generation, we have constructed a coordinate generating

scheme [BOGGI based on elliptic (Poisson) equation solutions which seem

attractive for internal flow calculations. These coordinate systems are either

orthogonal at boundaries or may have any specified angle, are periodic upstream

and downstream of blade rows, and may have arbitrary, user-specified spacing

near boundaries. This grid system does not correct the problem of highly

sheared grids and does not provide adequate grid resolution in the far field.

Analysis of the calculational results indicates that the present use of the

strong conservational law Navier-Stokes form and central finite differencing

is the problem rather than the grid systems. Investigations are continuing

to determine if simple, sheared grid systems may be used in place of the more

complex BOGG grids.

- BOGG - Introduction

One of the major problems in developing an effidient numerical calcu-

lational scheme is the choice of a proper coordinate system, capable of

transforming a complicated physical domain into a rectangular, evenly spaced

calculational domain. In the viscous flow case, the coordinate system nust

give a high resolution region close to solid boundaries in order to capture

the boundary layer, and its lines should be normal to this boundary.

Especially demanding is the grid development for transonic compressor and

turbine cascades due to their complicated shape, the complex flow structure

and the presence of periodic boundaries. The practical problem usually
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starts with a given grid point distribution along the boundaries coupled

with some desired properties of the coordinate lines at the boundaries,

and seeks a one-to-one mapping of the points from the physical domain into

the computational domain. In recent studies, many new methods of numerical

coordinate system generation have been developed ([1]-[7]). Most of these

methods are based on the solution of Poisson equations with Dirichlet

boundary conditions, giving unique and continuously differentiable trans-

formation functions. Only few of them, however, provide a direct control

of the line direction and spacing. Thomas (3] provides analytical ex-

pressions for the controlling functions, but this method fails to produce

the desired results in all but the simplest cases. Sorenson and Steger [4]

developed an effective method of controlling the spacing and angles at

boundaries for 0- and C-type grid systems. Warsi and Thompson [6] introduced

a non-iterative method for t-he numerical generation of orthogonal curvilinear

coordinates for plane annular regions between two smooth closed curves.

Although most of these methods are adequate for some problems, they are not

fully suitable for grid generation in internal flow calculations. The grid

generation method for this type of problem has to provide a positive control

of the grid lines at all boundaries, give the required spacing, generate

coordinate lines without excessive skewness while being simple, fast and

generally applicable.

BOGG uses a system of grid generating elliptic (Poisson) equations

similar to those in (31, but it introduces a simple and effective iteration

method of controlling the coordinate line angles at all boundaries. Coor-

dinate systems were developed for different inviscid and viscous internal

flow problems and used with success in an implicit two-dimensional numerical

scheme (11].
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BOGG Basic Formulation

The present method seeks a coordinate system transform

"= (x,y) and n =Ti(x, y)

-- as a solution of the Poisson equations

XX + Eyy = P(E 'I)

nxx + nyy = Q(, n)

where x, y are the Cartesian coordinates in the physical domain , and

E, i are rectangular coordinates in the calculational domain (Fig. 1).

The coordinate lines =const were in most of the cases aligned streamwise

and included solid surfaces; the coordinate lines n = const were usually

W-W normal to the streamwise direction at the boundaries. Equation (1) is

subject to the Dirichlet boundary conditions Eb=b(x'y) and b =Ti b(xIY).

The right-hand side functions P and Q control the spacing of the E and n

lines inside the domain 2. Since the values of E and n are fixed on the

boundary, a change in spacing within Q will produce a change of the angle

at which the and n lines intersect the boundary. The correct value of

P and Q is not known a priori, so that an iterative procedure over the

system (1) is necessary to find P and Q.

The effect of the functions P( ,n) and Q(E , n) on the resulting

* coordinate system can be seen by comparing the solution of (1) with the

corresponding homogeneous system
L'. ',=

xx +yy 
(2)n- XX + TIyy = 0

Let E,n be the solution of (1) and * * the solution of (2), subject

to the same boundary conditions as (1). Then, in a subregion D of , a

W.
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negative P(,m Tj) will cause a line =Z=const to move closer to the line

m than the line Z, since ; and fl are subharmonic on D. Similarly, a

negative Q( , fl) will move a line = Z=cconst closer to the line fm than
*

-* the line n = 2. Positive values of P and Q have the opposite effect on

the and n lines. If the curve is now a branch cut in D, this branch

cut will move in the direction of increasing Z for a positive P(m' , ).

The magnitude of P and Q determine the magnitude of the movement of the

coordinate lines; the sign of P and Q determine the direction of this movement.

The situation at a boundary f1= const =n min is shown.in Fig. 2a. Here the

position of the = const line on the boundary is fixed by the boundary con-

dition = b(xfy). A negative increment in P( ,jmin ) will cause the line

to move inside of 2 in the direction of increasing E. This movement will

-.
decrease the angle y between the line = const and the tangent t to the

boundary. A positive increment in P( E, min) will cause a movement of the

Sline in opposite direction. A proper value of P can therefore give the

desired angle y = O, 0 < S <iT. Here it should be remembered, however, that

the influence of P( , Tmin) is not limited to the line r but affects the

coordinate lines in the entire region. In most of the practical cases the

angle forcing requirement is not limited to one point but extends at least

over some part of the boundary Tj= const. This means that P(E ,f) has to be

found for all points simultaneously rather than by pointwise calculation.

Fig. 2b shows the analogous case of the influence of Q on q= const

lines at the boundary = const = . Here a positive increment of

Q(max n) will decrease the angle y.

4i
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For practical calculations the inverse relationship

x X( = ,)
(3)

y = y( Tf)

is needed. The inverse form of the system (1) is (see for example (1])

Lx -2x +yx = -j2 (PxE + Qx )

2 "(4)
OLY 2 y y Y + yyrn _J2 CPy + Qyn)

where
2 2

x=x + V

S x nx E+ yy

y= x + y2

J - x y- xy = Jacobian of the transform

It is of advantage to define new spacing controlling functions as

J 2  J2

OL Y

The values of the functions and P are several orders of magnitude

smaller than P and 0. The above

explanation for the effect of P and c on the grid lines applies to ¢ and

i without restrictions since J /a >0 and J /y >0. With (5), the equations

(4) become finally
x -2$x +yx =(Ox + y~n)

(6)
a y - 28y + yyrn = (to.y + Y'Iyrl)

subject to the boundary conditions x=x( r',) Y Yb Once t

and 1P are chosen, the system (6) can be solved using an appropriate numerical

method.
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Choice of c and

The previous discussion illustrates that the angle Y at the boundaries

is determined by the function at r1= constant boundaries, and the function

t" at = constant boundaries. Starting from initial values of # and ZP, the

controlling functions have to be adjusted in an iterative manner to give

the required angles (8) between the coordinate line and the boundary.

In general the left boundary is defined by = in' the right boundary

by = a and the lower and upper boundaries by n = Ti and f) = m
max max

respectively. Solid walls are generally located on part or all of the range

, mn to E m at T 
= ) and ) =l . The most common requirement for= mnt max min max

this type of grid is that the coordinate lines are orthogonal to the

boundaries (8 =1T/2, at= 0). Specification of an angular deviation from

orthogonality is, however, allowed (i.e. the angle a is specified non-zero).

The following discussion applies both to orthogonal and non-orthogonal grid

line intersections at the boundaries.

The procedure necessary to obtain the desired grid angle, 8, at the

lower boundary will now be discussed. The nomenclature used in the following

section is as defined in Fig. 2a. It is assumed in this correction procedure

that any change in the forcing function will have 6nly a localized effect

on the coordinate lines.

It was stated in the previous discussion that decrementing the forcing

function (i.e. P) will reduce the angle y. Similarly incrementing 0 will

increase the angle y. The following conditions therefore apply.

y > 8 we require A < 0
(7)

y <8 we require A >0

6.

a
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Choice of an incremental function to satisfy these criteria will force the

grid lines to the required orientation. The forcing function ¢ is modified

between iteration counts Z and Z+ 1 using the equation

SZ++ (8)

min min

The correction factor, AO , used in this computation is given by

A9= -sin(Y- ) (A > l) (9)
A

This expression satisfies the movement criteria expressed in (7). The damping

factor A( > 1.0) is introduced to control iteration stability.

A similar analysis at the upper boundary leads to the following

iteration sequence:

Smax)+l max) + sin(Y- ) (10)max"'- 'a A

The value of inside the domain 0 is obtained by linear interpolation along

. a line E =constant. I~
( ,) *( , nminm + (,n m ) -i min (11)

At the boundary = m is determined by the sequence
maxf

)Z+I , )Z sin (y-a) (2

max = ( max f + B

and at

Z~l Z sin(I-B)min' ) = min' n) (13)

The angles used in equation (12) are defined in Fig. 2b. Between these

boundaries P is calculat- along a line f = const by linear interpolation.

"-(, = P(min n) + 4(max ') - W(min ) (14)
max ' '' max %min,
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If no specific requirement is enforced on the grid intersection angles at

any boundary, the forcing function remains constant throughout the iteration

procedure.

The above correction procedures require evaluation of the sine of

the angular error. This sine can be expanded (on the lower and upper

boundaries) to:

sin(y-$) = sin((y+e) - ( +6)]

= sin(y+e) cos($+e) - cos(Y+e) sin(S+e) (15)

where the angles are defined in Fig. 2a for the lower boundary. An angular

deviation (a) from orthogonality may be specified so the above equation is

rewritten in terms of a, y and e as:

sin(y-f) = -sin(y+e) sin(8-a) -cos(^+) cos(e-)

The angle, 6-a, is constant throughout the iteration procedure and is there-

fore only calculated once. The sine and cosine of the angle between the

= constant line and the x-axis (y+S) are evaluated using the equations:

[ ~~y( ,T1) - y rp I

sin(Y+O) = p

rx ~np) - x (E' lP_)) 2+ ('7(' np) -('rp_~

(16)
. . x( ,fl) - x( ,nf I )

cos(Y+6)
""X('1 n) x(, p_l)] 2 + (y(Eilp) -y(Epl)

where

S i+ on the lower boundary

Tp= 1,rtx on the upper boundary

On the left and right boundaries, the sine of the angular error is expressed

as:

I
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sin(y-B) = sin[(y-6) - ($-e)]

= sin(y-e) cos(B-0) - cos(Y-8) sin(S-8)

= sin(y-e) sin(8+a) - cos(y-e) cos(e+x) (17)

The angle, e+a, is again constant throughout the iteration procedure, and

the sine and cosine of the angle between the T = constant line and the x-axis

(y-6) are evaluated using the equations

= (y( In) - y(Pl1 )1
sin (y-6) (18)

/ (x(ITn ) - 1x( p n)) 2 + (p' - y( pl n)) 2

p p-l
x.. x(E Tn)  - ( xTI~~)

cos(y-6) = 2 (19)

( (x( p,n) - X( p_,n)) 2 + (yC p,n) - y( I,n))2

where

,p = min + 1 on the left boundary

p = m aon the right boundary
p max

BOGG Iteration Procedures

Once the functions p and 4 are established the system of Poisson

equations (6) can be numerically solved using finite difference methods.

The scheme selected was successive line over relaxation (SLOR). SLOR is

first applied along lines and then n lines for a number of iterations.

The forcing functions are then corrected and the procedure repeated.

The over-relaxation factors used in the SLOR calculations were

* generally taken as 1.15 for evaluation along lines and 1.05 along n lines.

* The damping factors applied to the forcing function corrections [Eqs. (9),

(10), (12), and (13)] were generally the same and had values in the range

1 to 5.

a.
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BOGG Calculation Examples

The simplest type of coordinate system was that of the diffuser, which

consists of an upstream boundary = 0, downstream boundary = i solid

wall boundary at r= 0 and either solid wall or symmetry line at r= j
max

The lines E = const were required to be normal to the fl boundaries; there was

no specific requirement for the n = const lines at the I boundaries in the

inviscid case. The viscous grid has geometric point distribution along

the lines allowing proper boundary layer resolution. The spacing in the

Sdirection is constant. The maximum error criteria for e was 0.20. The

resulting grid systems can be seen in Figs. 3, 4 and 5.

Compressor cascades are difficult geometries for developing coordinate

systems suitable for efficient viscous and non-viscous calculations. The

blade shapes chosen for examples were designed by Tong (10] with help of an

inverse numerical code. The physical domain consisted of the region between

the two blades and an upstream and downstream region bounded by blade chord

extension lines. Along these lines, the periodic boundary conditions have

to be applied, requiring the same point distribution at the upper and lower

boundary upstream and downstream of the blade, respectively. The upstream

(E =0) and downstream ( = 40) boundaries were locate4 one chord length from

the leading and trailing edge, respectively. The viscous grid has the first

and last n lines densely packed (geometric distribution) in order to capture

the boundary layer; the remaining n lines are uniformly spaced. In the non-

viscous grid all the n lines are uniformly spaced. The lines ahead and

behind the blade have geometric spacing to provide higher resolution close

to the leading and trailing edge. The maximum error of 9 was 0.50.

The resulting grids are shown in Figs. 6 and 7. These grids were used with

4
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considerable success by Bush [9, I1] in his two-dimensional viscous

implicit code.

The most demanding example was to generate a grid for finite difference

calculations of the flow properties in a turbine cascade. The transonic

turbine blade shape was the same as used by Demuren [121. The E =0 line

is the U-shaped upstream and periodic boundary extending from the leading

edge of the lower blade to one chord length ahead of the blade to the

leading edge of the upper blade. The periodic boundary is located at the

first and last 8 points on the line = 0; between these two regions is the

upstream boundary. The downstream boundary corresponds to 40.

The inviscid grid in Fig. 8 has 301= constant lines. The viscous grid

has 60T) = constant lines, where the first and last 20 points have geometric

distribution that allows good resolution of the boundary layer, see Fig. 9.

The requirement for the E-lines was again to be normal to the TJ = 0 and

n= jmax boundaries. The resulting C-type grids are shown in

Figs. 8 and 9.

The versatility of the present method can be best demonstrated on the

example of grid generation in the axial-radial plane of a transonic compressor

with both rotor and stator. The grid consists of fiye different regions

(upstream of rotor, rotor, between rotor and stator, stator and downstream

of stator) that are treated separately and then joined together. In this

case, both line types E= constant and nl= constant are controlled at the

4 corresponding boundaries. The angle between the = constant line and the

upper and lower boundary changes gradually fron r/2 to the angle between

"=i line and either the line n= 0 or nl= . The = constant lines
max max

4 are manipulated at the E = 0 and E = i boundaries to give smooth transition
max

4
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between two adjoining regions. The =constant lines have geometric dis-

tribution near the leading and trailing edges. There are altogether

98 i-lines and 17 f-lines. The resulting coordinate system is shown in

Fig. 10.

BOGG Input Details

BOGG requires two data files for input. One contains the coordinates

of the grid boundary, the other switches and factors required during the

calculation procedure.

The input files have the following format:

X-Y coordinate file

X,Y Values on the lower surface - format [2X,(8EI4.7)]

X,Y Values on the upper surface

X,Y Values on the left surface

X,Y Values on the right surface

Setup file

Line 1: Number of n lines, number of lines - format (2X,215)

Line 2: Number of forcing function correction iterations, number

of SLOR iterations - format (2X,215)

Line 3: Damping factors A and B - format (2X,2fl0.6)

Line 4: Over-relaxation factors applied along E lines and f lines -

format (2X,2f10.6)

* Line 5: Minimum angle deviation for convergence (RAD) - format

(2X, fl0 .6)

Line 6: Intersection angle options on lower, upper, left and right

* boundaries ISTART, IEND, IANG - Format (2X,315)

where ISTART and IEND are the positions of the start and

o
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end of the angle option and

IANG = 0 denotes intersection angle not forced

IANG = 1 denotes grid line orthogonal to boundary

IAIG= 2 denotes angular deviation from orthogonality

specified.

If IANG equals 2, the angular deviation (RAD) is then

input - format (2X, (8E14.7) ].

BOGG Output Details

The program generates an X-Y coordinate file of grid intersection

locations. At each =constant line (moving from E to ma), the X
min max

coordinates are output for T)= nmi n to j= Timax [format(2x(8E14.7))], followed

by the Y coordinates in the same order.

Geometry Interpolation Codes

A series of computer codes has been written as an interface between

Rolls-Royce turbine geometric description and standard GTL usage [13].

A pre-processor reads a Rolls-Royce proconsul file of blade coordinates

and generates blade profile coordinates in a form compatible with standard

GTL usage. Two more codes interpolate this data, using a Rolls-Royce supplied

spline interpolation routine, on to user specified X.cuts and interface with

the grid generation programs. A fourth program has been written to inter-

actively display and revise the resulting geometries and grid lines.

Grid-Related Errors

* As a test case for turbine type geometries, an inviscid calculation

of the flow through a turbine cascade was attempted.

The grid chosen was a throughflow type grid as shown in

Figure 11. This grid had 40 points in the axial direction and 20 points

in the tangential direction. Calculations based on this grid were extremely

I
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disappointing especially in terms of stagnation pressure error. A contour

plot of stagnation pressure loss for this turbine cascade is shown in

Figure i2. Upstream of shock waves, any

* stagnation pressure loss is to be considered a solution error. The

maximum error is about 15% near the leading edge, but a 10% error is ob-

served in the inlet region where the solution should and does have very

nearly uniform velocity.

Since this type of stagnation pressure error is known to be common

to most time marching algorithms, considerable time was devoted to

analyzing the error mechanism for Beam and Warming type codes. It was

felt that there were two distinct error mechanisms, one associated with

solid wall boundary conditions and a second one associated with the

truncation error of the scheme. It was found that the stagnation pressure

errors upstream of the blade rows correlated well with the second mechanism

and were not due to contamination of the solution by boundary condition

errors.

In order to understand the truncation error of the steady state

finite difference solutions, it is necessary to examine the strong con-

servation law form of the equations being solved which are the two

dimensional, transformed, Euler equation:

U + +F = 0 (20)
•t n "

U = J P = E + yF)J I

F= (n E + n F)J I  
(21)

Pv x y

PE

I'

i
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E [2Pu F = pv

Pu 2  (22)

I 2
PuV pv +P

ph u phov~0 0

= xyn -xy ; J= i/J-  (23)

JY Y =-Jx (24)
x n

... = TY Ty =i

-1
The values of the metric quantities (J , , flx, fl) are evaluated

numerically using the grid node coordinates. The steady state finite

difference form of equation (20) becomes:

Ej+l,k Ej-l,k F jk+l F ,k- 2 A
2A+ 2ATn

or in operator notation

-+ =0 (25B)
2A& 2An

In physical space variables, the continuity equation becomes:

(Pu) +l,k (+ltk+l -Y+k- (Pu)jl,k (Yj-l,k+l-Yj-l,k-l)

An A& An

(u)A,k+l (yj+l,k+l- Y-l,k+l) + ((u) ,;<_l (yj+l,k-1-yj-l,k-1) (26A)
An A& An A

•-(pv) i+l,k (x j+irk+l- x j+ik-l) +  O)J1k(jlkl xlk-
"U An A An

+ Ik+l xj+lk+l xjlk+l) j,k-l (Xj+l,k1- Xjl,k1 0

An An

as illustrated in figures 13 and 14.
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In operator notation we have
(Pu) j+l 6 kYj+l - (Pu) j-l 6 k yj - I + (PU)k-i j Yk-f(0U) k+l Yk+l

+ (pV) j1 6 kx_- (pV) j X+ + (PV) (PV) k Xk 0 (26B)
j-lkxj2.j+2. k j+1 k+1 j1+l (vk-l j k-i

This flux balance has the correct cell face area associated with the appro-

priate flux terms, but the flux across any face is approximated as the
value at the face mid-node (pu)j+l 6kY I , for example. This flux

jlkj+l

balance is common to all schemes using the strong conservation law form and

nd
2 order central differencing.

One estimate of the error in this flux balance can be obtained if one

estimates the same flux balance on a grid twice as fine as the present grid,

as illustrated in Figure 15. The new flux sum will be:

E. - E 1 F. 1i- F 1
j+Vk j--,k j,k+- j,k- -(

+ =0 (27)A+ An

We will estimate the term, E. 1 as:
j+-,

k

"-. £j+1 , - j y lE E Lx+ F

2 (28)

= (E. +E. (Sy. +6 y.) -(F. +F )(+6

4 j+l,k + j,k k j+l k j jl,k j,k k j+l j

If we subtract equation (26B) from equation (28) we get a vector error

estimate of:

."; ~~~ =(k)(j k ) + (jk(kEj)

+ (.j(6kFj (6 (6kXj)(6jFk) (29)

Note that C is a vector, not a scalar quantity. Figure 16 shows a contour

plot of E error for energy equation, for the tarbine cascade. The corres-

pondence between this error parameter and the stagnation pressure error shown

in Figure 12 is encouraging.! .
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An unexpected result on this analysis is that one term in equation

(29) is zero for sheared grids like those shown in Figure 17 . For this

grid, all y running coordinate lines are parallel, and xj=O. This fact

suggests that a sheared grid might reduce the stagnation pressure error and

Figure 18 demonstrates that indeed it does.

Conclusions

The status of the grid generation effort is at present very open-ended.

The grid error analysis shows that the scheme truncation error can be made

as small as desired when the grid spacing is chosen small. In addition,

one possible interpretation of the error analysis is that sheared grids

will be adequate even for turbine type geometries. Considerable effort is

now being devoted to determining if blunt leading and trailing edges and

thin shear layers can be satisfactorily analyzed with these grids. Until

these sheared grids can be shown to be inadequate, most computations will

be done with the sheared grids rather than the BOGG grids. The BOGG grids

do offer good leading edge resolution, but they do not solve the problem

of sheared grid lines, see Figure 11 trailing edge region. In addition the

far-field structure of these grids also appears to be a source for stagnation

*. *'pressure errors.

Analysis of the present Beam and Warming type algorithmic use of the

* strong conservation law forms shows that the present algorithm flux balance

is not very accurate. A primary goal for future code development is to

*O improve this flux balance. Three possible methods to improve the flux balance

are: one, introduce fourth order accurate finite difference forms on the

steady state solution evaluation; second, introduce an improved, specialized

*O flux balance like the error analysis in the steady state solution evaluation;

4.•
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and third, introduce a combined finite difference - finite element formulation

to provide the most accurate solutions. Each of these schemes will be

investigated to determine their possible application.

I

S~j



64

REFERENCES

1 Thompson, J.F., Thames, F.C. and Mastin, C.W., "Boundary-Fitted
Curvilinear Coordinate Systems for Solution of Partial Differential Equations
on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies."
NASA CR-2729, July 1977.

2 Thompson, J.F., Thames, F.C. and Mastin, C.W., "TOMCAT--A Code for
Numerical Generation of Boundary Fitted Curvilinear Coordinate Systems on
Fields Containing Any Number of Arbitrary Two-Dimensional Bodies."
J. of Computational Physics, Vol. 24, 1977, pp 274-302.

3 Thomas, P.D. and Middlecoff, J.F., "Direct Control of the Grid Point
Distribution in Meshes Generated by Elliptic Equations," AIAA Journal, Vol.
18, June 1980, pp 652-656.

4 Sorenson, R.L. and Steger, J.L., "Numerical Generation of Two-
Dimensional Grids 1y the Use of Poisson Equations with Grid Control at
Boundaries." Paper presented at NASA Workshop on Numerical Grid Generation,

* "Langley Research Center, Hampton, VA, October 6-7, 1980.

5 Thompson, J.F. and Mastin, C.W., "Grid Generation Using Differential
Systems Techniques." Paper presented at NASA Workshop on Numerical Grid
Generation, Langley Research Center, Hampton, VA, October 6-7, 1980.

6 Warsi, Z.U.A. and Thompson, J.F., "Numerical Generation of Two-
Dimensional Orthogonal Curvilinear Coordinates in a Euclidean Space."

* Paper presented at NASA Workshop on Numerical Grid Generation, Langley
Research Center, Hampton, VA, October 6-7, 1980.

7 Steger, J.L. and Sorenson, R.L., "Use of Hyperbolic Partial
Differential Equations to Generate Body Fitted Coordinates." Paper presented
at NASA Workshop on Numerical Grid Generation, Langley Research Center,
Hampton, VA, October 6-7, 1980.

8 Ives, D.C., "A Modern Look at Conformal Mapping, Including Doubly
Connected Regions." AIAA Paper 75-842, AIAA 8th Fluid and Plasma Dynamics
Conference, Hartford, CT 1975.

9 Bush, R.H., private communication

10 Thompkins, W.T., Jr. and Tong, S.S., "Inverse or Design Calculations
for Non-Potential Flow in Turbomachinery Blade Passages." ASME Paper No.

* 81-GT-78, 1981.

11 Bush, R.H., "Time Accurate Internal Flow Solutions of the Thin
Shear Layer Equations." MIT Gas Turbine Laboratory Report No. 156, Feb. 1981.

12 Demuren, H.O., "Aerodynamic Performance and Heat Tranhfer Charac-
* teristics of High Pressure Ratio Transonic Turbines." PhD Thesis, MIT,

February 1976.



65

13 Norton, R.J.G., "Users Guide and Test Cases for the Pre- and Post-
Processors of the Grid Generation Program," Rolls-Royce, Inc. internal
memo, November 1981.

14"



' ", 1 66

.I F

---- I - 0-

ii t 2

jx ==.

o 0=

I'~

A 1-=

-I, -

e' ,

*o°. - -



67

C"

0c

CC

0qo

LLLL

0 'b. 00. O
:J

Co

.

U.

-J



68

C1

4A.0

aU-
440 0m

06 0 0

el Co

j Ca' C

tcn-0L
Cy

LL. 'I



69

I Li

I x
\ \ \



70

id H I

tj~

RI'

0d C14



71

-T i

Fig. 5 Viscous diffusor grid with center line at r1-0
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Fig. 6 Non-viscous compressor grid;
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Fig. 7 Viscous compressor grid;

~max i max =0

%max :Lmax 4

X,



- - -.- - - -.- - ~ - w' ~-- ~ --. 74

Fig.8 Nn-vicou turinecascde rid

X 'N

04



Fig 9 Vicu ubnecsaegi

I7-



76

0

0%

II

P-4

;Z4



77

ACE ROTOR, BOGG GRID

w4



4 78

ACE ROTOR BOGG GRID, INVISCID

T 0 R L0. L400

E RH9OR *.* 0. 350

.300

0. 275

0.250

S0. 20C

C. I.5

0. 0751

Figure 12



79

Go4-

CL+

I -

Lan - a

CI F' -. 4ft U

4- X~

< +La



80

LL..

- -

UJ 3 0

cn --

CQ0 1..0

CjC

CM a

Qm.O CD

- C j

LLa)

(mu) -0.. (n) a)

-- ----t



81

LL

CD C~J ID
0 --

-~ - U-

o ~do

E LLU

L- 0 -

-- 4



82

ACE ROTOR BOGG GRID INVISCID

E~~ 909 5

IHC 3

0. 0205
10712

Figure 16



83

ACE ROTOR SHEARED GRID

Is4

Figure 17



84

ACE ROTOR, SHEARED GRID, INVISCID

T 0 T R 0 4D 13

PHBSSJRE 1..375

E 9l

0. 227

02 2

S175

0. 075

Figure 18



85

ACE ROTOR, SHEARED GRID, INVISCID

0. 020

o" 0

Figure 19



, ~ 8 86

* * AIAA-82-0063
An Implicit, Bi-Diagonal Numerical Method for

* r< Solving the Navier-Stokes Equations
E. von Lavante and W.T. Thompkins,

~ Massachusettss Institute of Technology,
I ~ Cambridge, MA

atAA AIAA 20th Aerospace

Sciences Meeting
[tAnersaryCelebrnonI January 11-14, 1982/Orlando, Florida

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1290 Avenue of the Americas, New York, NY 10104

aM



87
AN I!MPLICIT, BI-DIAGO'.AL NUMEaICAL METHOD

FOR SOLVING THE NAVIER-STOKES EQUATIONS

E. von Lavante*
W.T. Thompkins, Jr.'

Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract and time. Then the second step is used to remove
the stability restriction of the first step by

In recent years, much progress has been made in transforming the equations of the first step into
solving fluid dynamical problems using finite dif- an implicit form. The resulting matrices are block

. ference methods. Solving inviscid compressible bi-diagonal and can be easily solved. The Jacobian
[ problems in two and three dimensions has become al- matrices of the governing flow equations are ex-

.most routine with many suitable methods, explicit pressed in a convenient diagonalized form, making
or implicit, available. The problem of compressible, any matrix inversion unnecessary. The method was
viscous flows in complicated geometries remains, tested on a number of numerical examples, including

S-however, a major challenge. Here the fine mesh incompressible and compressible Couette flow and a
spacing in the boundary layer region makes the ex- supersonic diffuser with shock-boundary layer
plicit methods with their simple boundary conditions, interaction.
impractical. Existing implicit methods can make use
of large time steps, but require costly inversions Development of Algorithm
of large block-tridiagonal matrices. A method re-
cently developed by MacCormack eliminates this dis- The two-dimensional compressible Navier-Stokes
advantage by introducing a predictor-corrector scheme equations can be written in the conservation law
requiring the inversion of only block bi-diagonal form
matrices. It is the aim of present work to extend
this method to allow solution of viscous, compres- U F(U) 0G(U)- -- --- = 0(i

sible problems in general coordinates for arbitrary t + x y
two-dimensional geometries.

where

Introduction

In recent years, much progress has been made in
solving fluid dynamical problems using finite Pu +
difference methods. Solving inviscid compressible U F Pu + a x

problems in two and three dimensions has become al- pv Puv + Txy
most routine with many suitable methods, explicit
or implicit, available. The problem of compressible, et (e +O)u+ y vk x
visccus flows in complex geometries remains, how- t x xy

ever, a major challenge. Ov

The fine mesh spacing required in viscous Ouv + Tx
regions makes the explicit methods with their

* simple boundary conditions, such as the MacCormack G= v" + a
explicit scheme (1,21 impractical. The existing y

implicit methods, such as Beam and Warming (31 or (et+0 )V + T u - k a
Pulliam and Steger (4], make the use of large time y xy 3y

steps, corresponding to Courant numbers of 0(102),
possible, but require costly inversions of large with 1 2 2
block-tridiaonal matrices, A method recently P = CY-i) Ce ,u +V )]

developed by MacCormack (5] eliminates this disad-
vantage by introducing a predictor-corrector scheme - 2 av
requiring the ivrsion of only block bi-diagonal x  Ou

matrices. The resulting difference equations are
either upper or lower block bi-diagonal equations (;u +av
that can be solved easily in one sweep. Unfor- xy - y
tunately, this method was demonstrated only for the
simple case of flat plate shock-boundary layer f{u av
interaction. It is the aim of ;resent work to ex- c = 1 - 2u -y

pand this simple implicit method to allow solution
of viscous, compressible problems for general two- Equation (1) can be expressed in nondinensional

dimensional geometries. form by defin-ing nondimensional variables

The present nethod uses as its first step the - - , x , ,u v
explicit predictor-corrector finite difference Y . a a
method of r], ~pproxinat:nc the qover-,nq :1uid 0 o 0 0 0

flow equations 1:c eccnd ;rjer :.'.irac' -. zrace
• " - . *z - I, ./

2 t - K K
*Now Assistant Professor, Aercspace Fnq. ept., 0 O0 a0  .7 a 0 0

Texas A & M, College Station, TX 7-843
"Associate Professor, :ePt. of Aero ind Astro

Member, AZAA

* C.,P~r,uhI , tmericsn lnooi~ue of kernutici and
%%oronjuli. Inc.. 1982. 411 rnihi res ned.
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a 0 at uCp
t ° toao__Re 0 o Pr o 00x = Jy = -Jxt'=t - Re- X 'r 1 3y

0 0 0
1. . -Jy. ly . Jx_x - y (4)

The primes -dill be dropped later on for 
convenience.

The vectors U, F and G then become: The method of numerical negra:io C qa.-n

1 (2) has been adopted from MacCormack [51, where it

' ! is explained in detail. The resulting integration

;" o t scheme will be therefore presented without detailed

.development. Equation (2) is integrated by the
L= Iv, F u following implicit predictor-correc'Or set of finite

KY difference equations:

le (e'+.x)U' +.' v-k' 1 _Predictor:
00 (e, +n A) anPr ~ ~ 0 Re -(- 1 A +a

Ov' 5 n + A F..'-t An j

.0 1' U ' v ' . + '

G ' '  a' I-At I-At A =  ny
U. .. a3 nJ (,,+ %>v,2 + a% u- A A n, :0n  ".

.. Pr Re ov-l) 3y' i,3 z;j + mj

'where Corrector:

P. -- a a' Re )x' AG n. -At t i'j +
0 an

• j-o tY' + ,' j A+ An j j
T'u - , LEIn4 + U -- nJ

Ky Re P7 3 1 +At A I A La- i., i'

yR u avv an4l 1 (n n+1 Af4J

a- ' "P'- Pa; + 'a , 2Re y' i, (' + , i, + i, j
..-. o(5)

The equation of state for perfect gas becomes: where A W Bj are matrices with Rositive eigen-
-. values, related to the Jacobians A - (t/aU) and

Y"l , e' - ,.1 B = (aG/aU), (W /AW) and (A /An) are one-sided for-T p' = (y-) [e t- 0 (u 2 H'2

t2"" . ward differences and (-/Ac) and (A-I/A) are one-
sided backward differences.

It is also interesting to note that:

The Jacobians A and B are related to the

u' acobians A - aF/9U and B 3G/9U by

-A~x + BEy
:n most of practical cases it is necessary to K
transform the Cartesian :icordinates x,y into some
more general coordinates Z(x,y), n(x,y). The strong B -

conservation law form of (1) can be maintained as
shown, for example, by Vinokur [6]. Equation (1) and are given in, for example, Steger [7]-
can be then written as

T +  0 (2) 0 X , y

where -u,. + -S Ur, -(a-l)& U: E u -BxV B&
* 9 x

(F x  GF )1 , G (Fnx Gn )/J vU:. ,a- - yU V ': - 8-l) yV BE

J is the transformation Jacobian A4 1  A4 2 A4 3  (B+l)U, (
-J

1 , * 4 where 4

Ky - K ~ K~ YKra
2  

Y

The metrics ' , ' etc. are easily formed using 41 ( 42

the relations x

and A4  3  U~ v +

2
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here , u 2 3= (y-1), a=v'/ , r, -P/lx, 1 0 0 1
:-"a (/ay) and Ur, U are the :cntravariant 0 0 0;

elocities
.4" v 0 0 9

Uri. = uj + V ,

" f now P =kA+ k3B for the : at~:e svsten
"here = T / x and fl =n/ 'v. The Jacobian matrix - 7 g

x.er n, 3/xady :hen P
-hen !I = .P gives the r oe r relat:-_ n f'zr zsn-

B is obtained by substituting U., ' " by U, version of ? from zonservat-ve t. ncncns-:a.ive.
l "Both P and P have the same egenvaues, so that

The integration scheme (5) can be much simpli- = (.0)
fied by diagonalizing A and B. Once the eigen- HT(MT)

values of A and B are known, it is possible to
A Equation (10)1 can be used to .ind the matricesS*''"' express A and B in the form ^ ad A3, S-, i"'' A , S and 5D S 1 - in (a). one can, for

AA example, set the arbitrary k and k to k,

A S.,1 2
A-k 2 = and obtain

8P P= rjA + r B

where A and A are diagonal natri:es consisting of The zomcar-son of (10) and (8 reads t3

the eigenvalues of A, A i' ..... and 3, (A,l A,4 ^ SI .=MT (i
iA

ABA respectively. The vectors t. and Sare
constructed using the eigenvectors of A and 3, S: can be found by carrying out the multiplication
respectively, as columns. i (1i). The result is

Warming et al (8] found the eigenvalues and Sr
* cigenvectors of the nonconservative system corres-

conding to (1) :
_7 . i2 77

,, 2.

ax ay .

They give the eigenvector matrix T such that if u1 :V /-
F - " k , + k 2 , t h e n : :

2
I ' : ." :

IA 2  a c1  aTI=T ) 0 3  -A : ] [0 V +

ci- -(a c 1 c.

for arbitrary k,, k2 . The matrix T is::..2. (12)

1 0 where c, 2 2/ 1 
+  

y . is found simply from
2a 7-2 1 X y

K K 1  2 S.. -T H
0 KK 1 = k 1/k I k2

1 1 2
T2

K -K K kk/"k 2
0 -K 2 2 2 2 1 2

a . C10 04 Oa

72 v2j

The Jacobians A and B sf the conservative systen
(1) are obtained from the ncnconservative A and
by

AM M_ m (9)

where

3

I-
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=.s - , ,,n ,+ n]

1) let U 1)j _At IE
2  

+ ' J at every Point
-- . the calculational!c-ain.

a a aa
2) solve

V X + : Iv

- 01 __.
cc1  c1  c1  t~iI -AtU for

U, I Ui- :This is done in two steps bv der.oting
23~ x 6v

aLc- a C n .**=1
a____ ____ 1 1 a 36U I-ll S resulting in two

0/2 p V2 1,) ( 1..)
vector equations.

_ a) I t

a c1  ( A* i .3 1,

-77 /2 -P7 - a72

I _ A BI .4
(13) b) I - it n .

And finally AA is formed from eigenvalues of A. A closer look at step 2a reveals that it is an
These are given by, for exanole, Steger (7]: upper bi-diagonal equation that can be solved by

sweeping in decreasing " direction for a constant
' Ur 0 0 0 "I. Substituting (8) in step 2a and some simp-e

manipulation leads to
0 U 0 0

•- A 0 0 U +ac 0 (14) I + At i0 
D l

'IA 0 1 1 .2 1,)j ;1,)

0 0 0 UY-ac1 ^ 0*
a6 +J At U i+1,j i+lj (16)

S , AS and s are similar; they can be found by

.replacing I and U by , n and U . Following Denoting w - A + AtIRI L and
X & y n ,j i+l,j i+l,j

- closely the MacCormack approach in [5], the matrices some matrix multiplication gives finally
11 and in (5) are formed by replacing the

matrices AA and . by positively valued diagonal .* A -l -l
AU 6V 41( + AtD ) S. w (7

matrices DA and DB such that 1,A

Equation (17) can be very easily solved since
DA - "A' + 'A and 91 are known and the inversion of the

diagonal4 matrix (i+tD ) is trivial. After all

DB - IAI + A. r (15) U,. inside the calculational domain are determined
B + ABth1' step 2b can be carried out in the same manner.

The corrector steps are analogous to the predictor
where steps. The major problem in the above described

scheme is finding the prorer boundary values of

YA 2 the expression Atli,.SO.,j for max'
and j - j m and - 1, because these are not known

As 2 v (n2 + 2]1 1 an at the tim 'when the sweep begins. They will be

BA " x y 2 At- dealt with in the next section.

and Boundary Conditions

M" I (A + 2u) ky Since the present method uses upwind spatial
V"' Re r Re derivatives, a starting value of the expressionx r0

I 
0  AtI2166 or .%t%5AIl is needed for both the predictor

u (and corrector. For simplicity, we will devote these
Formula (iS) for 0 and Dassumes that viscous expressions 5W; they represent the implicit part of
effects are modeleA in the implicit part of the the boundary conditions. The explicit boundary con-

scheme by addition of the terms 'A' *' which include ditions, needed for evaluation of the expression
*'-" viscosity through thecoe.ficient . The elements AUn, are obtainable more easily. At the boundary,

of DA , 0 are non-negative; negative values of the equation (16) will take the following form:
elements of DA, 0D mean that t!e CFL condition is

met and there is no need to use the implicit portion (I 4 .AtS 0 r- A6 ,+ SW (18)

of the scheme (5). The integration scheme (5) can ,. A i i,' 1,3
Snow be carried out in the following steps:

4

6n
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in order to maintain the unconditional 
1 0 0 0

stability of scheme (5), the value of 6w would have -l 0
to be evaluated implicitly. An improper treatment =
of the implicit part of the boundary conditions, 0 0 -1 0
such as lagging in time, will limit the stability
region of (5) to CFL members of 0 (1). The present 0 0 0

work developed some ad hoc procedures for deter- There still remains the problem of finding the
mining the value of 6w that gave satisfactory re- predictor value of w. The present work used the

sults for the test cases used. A more vigorous pollor value

treatment of the boundary conditions for the pre-
sent method will be re-uired to develop their
generally valid formulation. to d R •t(BI6U) -6

j -2
Following boundary conditions were implemented:

* while switching the direction of the predictor
a) Supersonic inflow boundary: At these sweep after every completed predictor-corrector

boundaries, all the eigenvalues of A are positive, sequence. This is equivalent to lagging the
so that all characteristics point from outside into boundary value of change of flux one half time step." the computational domain. All the elements of U

• are therefore specified at this boundary. For d) Periodic boundaries: The periodic
. time-independent boundary conditions one obtains: boundaries were again placed between the first and

0 0, Pu, Pv, a - constant; 6W - 0. second grid point, and 6W was lagged one half step.
S ib :Placing the periodic boundaries at, for example,

b) Supersonic outflow boundary: Here all i - 1 + (1/2) and i = i -(1/2) resulted in thethe characteristics have the direction form inside f
to outside. All the values of U must be therefore following scheme: For pofeictor sweeping in

.' direction of increasing.i,
.. extrapolated from the computational domain. The
* explicit part of the boundary conditions does not n --
" represent any problems; the elements of U are in 1 0 j u =n ui n

this case linearly extrapolated from the l,j MXl,j max -l,j
computational domain:

n+l n n+l n and
6 .A ( 1 j - vi - ;19) e i . ; ni" - U" -2 () l, max-, emax-l

max max max

The same extrapolation was applied to 6W. W = 6wn
l1j i -~lj

6W % 2At (1;16U)i -l - U. -2 (20)ma
max max and for corrector,

n+l n+l n+l n+l
Since, at the time of evaluation of 6W, the ex- . 0 i2
pressions on the left-hand side of (20) are not max,j ax - u2

' j '
* known, 6W would have to be calculated by using an n4l nq

implicit scheme at the three points ia n+l v 2+1 , e. e2 'j  and
-2 MA' ax-1 ' V. jv2  1 .a~ 2,j

max-2 max,j

in the present work the CFL number in the n+l nl
x-direction was always less than 1, so that purely 6W max,j 6
explicit boundary conditions were used, giving (19)
and 6W - 0. Here, the grid lines are assu~med to be orthogonal

c) solid wall boundary: The wall was placed at these boundaries.
between the first and second grid point and re-
fleoctive boundary conditions were used. The ex- No attempt was made at this time to createplicit boundary conditions for an adiabatic wall are nonreflective implicit boundary conditions based onthen the characteristics of (5). Note also that the

outflow boundary conditions are only explicit. The
~. _- '  - -~vipresent method is therefore limited to supersonic in-

i,I i2 ~,1 " ,flow and supersonic outflow boundaries with CFL number

0(l) in the outflow direction or periodic inflow/
. i,l -i,2 i el - il,2 outflow.

The corr~ctor value of 6W can be obtained
usinT the same principle from the predictor value of The present numerical method was tested on two
It he ame princp fro texamples, the Couette flow and a supersonic

Utad at the pointj-2difsr diffuser.
W - R t(:B6 )nl (21) A) Couette flow: The phvsical domain :onsisted

of stationary :ower wall at j = 1, uniformly moving

where apper wall at j - 16 and two periodic boundaries at

i- I + (1/2) and i - 10 + (1/2). The computational
domain had 16 grid lines in the n-direction and 11
grid lines in the i-direction. Several cases were
run for Reynolds numbers based on the distance be-
tween the upper and lower wall between 6.2 and

5
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3 _2.3 x 10 at Mach numbers between 0.09 and 0.75. References
Courant numbers in n-direction of up to 1000 did
not cause any problems, but the Courant nu.mber in rl] :!acCormack, R.W.: The Effect of ";ccs:
-direction was limited to 0(l) by the periodic in Hyper'-elocity :mpact :raterino. AIAA parer

boundary conditions. Depending on the Reynolds 69-354.
nurmer and the Courant number, the steady state
solution was reached after 10 to 500 iterations. [2] '.!acCormack, R.W. : Corputational Efficzenc t
The results for U = 0.75 are shown in Fig. I. Achieved by Time Spli ting of Finite Difference

up Operators. AIAA paper 72-154.
8) Supersonic diffuser: The supersonic

* - diffuser flow calculation was cerfored zo test [3] Beam, R.'. and Wamn.in, R.F.: An :nplicit
• , the present method on a more demanding case for Factored Scheme for the Compressible Navier Stokes

which analytical and experimental data are Equations. AIAA Journal, ;ol 16, ,io. 4, April
available. The diffuser had the shape shown in 1978, pp 393-402.
Fig. 2. It has a straight lower wall and upper
wall with a compression corner to produce a shock [4] Pulliam, T.H. and Steger, J.L.: On :mplicit
of required strength. The orthogonal grid shown Finite Difference Simulations of Three Dimensional
in Fig. 2 was numerically generated. There were Flows. AIAA 16th Aerospace Sciences Meeting,

* .51 grid lines in n-direction and 51 grid lines in Huntsville, AL. Paper 78-10, Jan. 16-18, 1978.
* -direction, with 20 grid lines in the viscous

layer region close to the wall. Upstream, the Mach [5] MacCormack, R.W.: A Numerical Method for
number was 2, and the velocity distribution corres- Solving the Equations of Compressible Viscous Flow.
ponded to Re - 1.25 x l04 . The pressure ratio AIAA paper 81-0110.
across the s~ock was P,/, = 1.2; it was chosen such
that direct comparison-with experimental results [6] Vinokur, M.: Conservation Ecuations of 5as-
[91 was possible. The boundary layer was assumed dynamics in Curvilinear cordinate Systems. J. of

S'. to be laminar. At the eflection point the Reynolds Computational Physics, '.cl 14, Feb. 1374, pp -)5-125.
number was Re 3 3 x 10 ; the pressure increase due
to the shock caused boundary layer separation. The (7] Steger, J.L.: Implicit Finite-Difference
resulting pressure profiles after 600 iterations at Simulation of Flow about Arbitrary Two-Dimensional
CFL number Cf 160 agree rather well with ex- Geometries. AIAA Journal, Vol 16, July 1978,
perimental data from Hakkinen at al [9] (see pp 679-686.
Fig. 4).. The pressures at the walls display
slightly higher values than the experiment due to (8) Warming, R.F., Beam, R. and Hyett. B.J.:

*-. the blockage effect of the boundary layer. The cf Diagonalization and Simulations Symmetrization of

- coefficient in Fig. 4 shows again good agreement the Gas-Dynamic Matrices. Math. of Como., Vol. 29,
with analytical data by Bush [10] and experimental Oct. 1975, pp 1035-1045.
data which were performed on a flat plate. [9) Hakkinn, R.J., Greber, I., Trilling, L.,

Some problems were experienced with the and Abarbanel, S.S.: The Interaction of an Oblique
boundary conditions in 1-direction. Best results Shock Wave with a Laminar Boundary Layer. NASA
were obtained by switching sweep directions after Memo 2-13-59W, 1959.
one complete time step. The corrector value of SW
was reflected off the opposite wall. Although the (10] Bush, R.H.: Time Accurate Interval Flow
method has natural dissipation, the steep gradient Solutions of the Thin Shear Layer Equations. Gas
at the shock boundary layer interaction region Turbine & Plasma Dynamics Lab., MIY, Report No. 156,
caused sometimes stability problems. A weak fourth Feb. 1981.
order explicit damping term was added to the
right-handed side term, eliminating the instability. .cknowlelnent

Conclusion The research' was sponsored by the Office of
Naval Research under contract No. N00014-B1-K-0024,

The present method offers substantial potential monitored by Dr. Albert Wood.
for use in complex compressible viscous flow cal-
culations. Using the same Courant numbers, it is
faster and simpler than existing implicit methods
because it does not require inversion of block tri-
diagonal matrices. At the present time its use at
hiher Courant numbers is limited by the choice of

boundary conditions to supersonic flows. Its
* general usefulness for transonic flows depends on

future research in the area of boundary conditions.

The implicit part of the boundary conditions
deserveb special attention as well as the formulation

• [•"of non-reflective boundar/ conditions for the inflcw
and outflow boundaries.

The % - constant boundaries (upstream and
downstream) did not represent a problem in this
case, because the CFL number was here 0(l).

6
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Figure 1. Velocity and pressure profiles far Cauette

flow at different x locations.

Figure ?. ipersonic diffusor grid.
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Figure 3. Boundary layer velocity profiles computed for lower wall

shock boundary layer interaction.
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.Hakkinen at al.
SExp. data
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R. Bush
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Figure 4. Comparison of lower wall pressure and

skin friction distribution with experi-

mental data.
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IMPLICIT MacCORMACK SCHEME

Summary

An extremely interesting implicit scheme for viscous flow calculations

was suggested by MacCormack. This scheme was generalized for arbitrary two-

dimensional geometries and examined for its use in turbomachinery type

geometries. The scheme was found to be potentially useful for supersonic

inlet analysis but generally not useful for turbomachinery analysis. A

copy of an AIAA paper presented at the 20th Aerospace Sciences meeting is

enclosed as part of this report.

r.
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COMPUTATIONAL PLAN

As a program management aid, a three-year computational plan has

been created and is outlined in figures (1-3). Figure (1) attempts to

outline logical interrelationships between development work on the two

and three dimensional viscous codes, specific test examples to be cal-

culated, specific problem areas to be examined and general project ob-

* jectives. It can be seen that the two-dimensional viscous code is pro-

*" jected to be used both as a development and test tcol for the three-

dimensional code and to study important flow problems such as base

pressure prediction and film cooling heat transfer prediction. Figures

2 and 3 are projected time lines for the code development and checkout.

The test examples chosen are expected to be modified through interaction

with the sponsors and by events.

eJ-

4
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TWO DIMENSIONAL VISCOUS CODE STATUS

Summary

The status of the present two-dimensional viscous code development

is illustrated through a series of calculations for the RRT7 cascade

at design incidence. The first inviscid calculation illustrates that

the problems of global mass and momentum conservation associated with

time marching codes have been solved and that adequate blunt leading edge

resolution can be obtained with sheared grid systems. Analysis of such

solutions has shown that the artificial viscosity terms used to control

algorithm stability are themselves an error source when grid spacings

change rapidly. Improved damping term formulations are the next major

focus for two-dimensional code development. A second set of inviscid

and laminar viscous solutions shows the extreme sensitivity of turbine

cascade calculations to trailing edge geometry. Since our intent is not

to develop an inviscid flow code, inviscid trailing edge model and in-

viscid boundary condition improvements will be directed by Dr. Norton

of R-R.

Inviscid Flow Calculations

A set of test calculations for the RR T7 cascade geometry were con-

ducted in order to evaluate general predictive capabilities of the

present code and grid systems. The test calculations were all conducted

at design incidence. The first grid system chosen is shown in figure 1

and uses 69 axial points and 30 tangential points. A rather blunt trailing

edge with coarse grid resolution was used. Figure 2 shows the comparison

between predicted and measured surface Mach numbers. Reasonable agreement

exists on the pressure surface, Leading edge resolution appears adequate

." .
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but rapid changes near the leading edge appear to be caused by the

artificial damping algorithm. Present damping algorithms evolved for

grid systems of rather uniform density. When used with the rapidly

varying grids of figure 1, this algorithm is inadequate. A stagnation

pressure error contour plot for this solution is shown in figure 3.

. °Important pressure errors are generated at the trailing edge, but the

solution is generally adequate in this respect. Figures 4 and 5 are

plots of the mass averaged flow angle and mass flow rate against axial

distance. Conservation of these quantities is excellent.

In order to improve leading and trailing edge resolution a new

grid, shown in figure 6, was constructed. This grid has 89 axial points

and 50 tangential points. A "sharp" trailing was modeled. The surface

Mach number comparison for this grid is shown in figure 7 and can be

seen to be very poor. Suction surface velocities and blade lift are

very low as is the suction surface trailing edge velocity. This result

is quite surprising unless one realizes that the blade lift (circulation)

is controlled by the trailing edge model, and the "sharp" trailing edge

does not produce a good flow model.

Viscous Flow Calculation

In order to test the importance of trailing edge modeling a laminar,

viscous, design incidence solution was conputed. The grid, shown in

figure 8, has 100 axial points and 50 tangential points. Since the object

was to test trailing edge models, no attempt to generate a good viscous

grid was made. Instead, the same leading and trailing edge axial spacing

was retained, and 10 points added near each blade surface. Computed surface

• - "- " .a j . L -.
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pressures are shown in figure 9 and can be seen to compare much more

favorably with the measured pressures than do the second inviscid test

case. The same type of leading edge pressure oscillations can also be

seen in this solution.

Implication for Viscous Code Development

The proper conclusion to be drawn from these comparisons is not

that viscous effects are important for the T7 at design incidence, but

rather that trailing edge modeling is important for inviscid calculations.

Since our objective is not really to develop inviscid code predictions,

trailing edge models and boundary condition procedures for inviscid

calculation will be directed by Dr. Norton of RR. Since boundary layer

calculations and turbulence modeling are also being followed by

Dr. Norton, the possible use of these codes for inviscid predictions

will be adequately explored.

These examples demonstrated persistent leading edge oscillations

which are felt to be not really due to blunt leading edges but an

artifact of the artificial damping algorithm when used with rapidly

varying grid mesh spacings. This problem and the generation of more

realistic viscous grids are to be the next areas of.work for the two-

dimensional code.

I

I"
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T7 TEST CASE, INVISCIDJ
SHARP TRAILING EDGE

Figure I
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T7 TEST CASE, INVISCID CALCULATION, BLUNT TRAILING EDGE
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CD T7 TEST CASE
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T7 TEST CASE
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T7 TEST CASE, INVISCID,
* SHARP TRAILING EDGE
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T7 TEST CASE, INVISCID CALCULATION, SHARP TRAILING EDGE
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T7 TEST CAS)E, LAMINAR CALCULATION, BLUNT TRAILING EDGE
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FIRST ANNUAL RRI/ONR REPORT

EXPERIMENTAL EFFORTS

Introduction

This report summarizes the experimental activities during the

first year of the Investigations of Flow Fields and Heat Transfer in

Modern Gas Turbines. Activities during this period consisted primarily

of the conceptual and preliminary mechanical design of the Blowdown

Turbine Facility.

The goals of the program are summarized in Figure 1. The

emphasis is on developing the capability to simultaneously measure the

heat transfer and aerodynamics of a full size film cooled high pressure

turbine under rigorously simulated conditions. Thus, all the

nondimensional force and energy ratios (Reynolds No., Mach No., Rossby

No., Prandtl No., Eckert No.) will be kept the same as for the full

scale turbine. This must be accomplished, however, at a cost level,

both for construction and operation, consistent with a University

operation.

Scaling

The principal scaling is one of temperature. The temperature

ratios, main flow gas to metal and coolant flow to metal, are kept the

same as for the full scale turbine but the absolute temperature levels

are reduced. In this case, the metal temperature is scaled to room

temperature. The resultant gas temperatures are 478 0K for the main flow

and 2124K for the coolant.

Another variable in the scaling is that of gas composition. Air is
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a possible choice but has a ratio of specific heats, y 1.38 at 4780K

- instead of the y 1.28 typical of high temperature turbines. By mixing

light and heavy gases we can adjust Y, both to simulate the full scale and

*to investigate the importance of Y matching for aerodynamics & heat

transfer testing. Figure 2 lists the properties of several

argon-refrigerant mixtures while Table 3 lists the inlet conditions

* required for similarity with the full scale turbine. Note that not only

* does the gas mixtures match y, but the Reynolds No. is matched at a much

lower pressure, 4-5 atm., implying considerable savings in tanks, piping,

*etc. as well as in the amount of test gas required. Of the refrigerants

- investigated, R-12 (Freon-12) is by far the least expensive ($1/lb) and

therefore the gas of choice for the main flow. The coolant temperature is

low enough to condense R-12 at the max pressure considered, 10 atm, so

*that R-14 would be used for the coolant. Other advantages of the gas

mixture stem from the 25% reduction in the speed of sound compared to that

in air at the same temperature. Thus, for a given tip Mach No., the

rotational speed is only 3/4 as great-reducing stresses by a factor of 2.

The blade passing frequency is similarly reduced, decreasing the frequency

response required of the fixed frame instrumentation for a particular

spatial resolution in the rotor frame.

Figure 4 illustrates the Blowdown Turbine scaling. Note that the

temperature ratios (the Eckert No.) establishes the gas temperatures;

4| the Reynolds number establishes the inlet pressure; the ratio of

specific heats establishes the gas composition; and the tip Mach No.

* sets the rotational speed. The Prandtl No. cannot be independently set

7
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but fortuitously is essentially exactly correct. The reduced absolute

pressure levels and the high molecular weight of the mixture combine to

C. reduce the turbine power produced by a factor of approximately 20.

At this point, the turbine size must be selected. Basically, as

large a turbine as possible is desirable from the point of view of

instrumentation. In fact, even the largest production high pressure

turbines typically have blade spans of only 6 cm. The facility size scales

more closely with mass flow than blade length, however. The mass flow

required for a turbine from a 50,000 lb thrust engine was beyond the

resources of this program and a 0.5 m (20 inch) diameter turbine size was

chosen. This was consistent with the resources in hand, comparable in size

to the NASA High Pressure facility, and has a span 2/3 of that of the

largest turbines.

Steady state turbine performance measurement is not a strong

driver since the goals of this program are primarily concerned with time

resolved measurements. Therefore, the idea of building the facility

around an existing conventionally tested turbine had considerable

attractiveness. It reduced the program costs and, even more

importantly, provides a baseline performance against which to compare

the blowdown test results. The turbine selected is of Rolls Royce

Limited design and manufacturer. It represents a high work design of

the mid to late 1970's and has a pressure ratio of approximately 4 to 1.

The full scale column in Figure 4 refers to this turbine.

For purposes of future research capabilities the facility was sized

r.. for twice full scale Reynolds No. testing (10 atmos. laboratory inlet total

".

b°
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pressure) and a laboratory inlet temperature of 530 0K (500*F), to permit

carbon steel construction and the use of elastomer seals. This results in

a facility capable of simulating full scale conditions up to 40 atmos. at

2500°K (45000R) as shown in Figure 5.

Facility Configuration

Now that the physical scaling is established, the facility

configuration must be selected. Many candidate configurations were

examined with four in some detail. These are summarized in Figure 6.

All of these designs are based on transient testing. This is both to

reduce the costs associated with the experiment and to take

advantage of many of the transient heat transfer and fluid dynamic

testing techniques developed over the last 25 years. Also, since the

predominant source of unsteadiness in turbines is rotor-stator

interactions, a test time on the order of 0.1 to 1.0 sec. (i.e. 600 to

6000 blade passings) should be sufficient for most studies. This has

proved true in several transient cascade, turbine, and compressor

facilities at MIT and around the world.

One configuration studied used room temperature high

pressure gas storage (100 to 200 atmos.) to feed a flow heater and then

the turbine. A large flywheel would absorb the turbine power (Figure 5,

.#1) This has the advantage of maintaining constant inlet pressure

during the test time with fast acting pressure regulators. The

principal disadvantage is that the high pressure storage precludes the

use of a heavy gas mixture (the heavy gases condense at high pressure).

The second configuration is a variation on the first in which

° 0"
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the high pressure storage is replaced by a room pressure expulsion

bladder contained in a heated shell. Since, the turbine inlet pressure

is constant at room pressure, Freon can be used. This scheme

has the disadvantage that full Reynolds number similarly cannot be

achieved. Also, the technology required for a 100 m3 500OK balloon is

risky.

The third configuration considered was the original concept which

motivated this project. In this scheme the turbine is directly coupled

to a compressor whose inlet is the turbine's outlet. Thus, the turbine

and compressor turn at the same mechanical speed and share the same

flowpath. Since a choked turbine produces power proportional to the tip

Mach No. squared and a centrifugal compressor does work as the square of

the tip Mach No., the turbine-compressor pair are matched over a

considerable range and operate at constant corrected speed without the

need of a control system. The corrected weight flow is constant so long

as any orifice in the flow path remains choked. If we now place the

turbine-compressor test section between two tanks, the upstream supply

tank filled with the gas mixture at appropriate conditions and the

downstream dump tank evacuated to full vacuum, the facility is complete

with the addition of a valve or diaphragm between the supply tank and

test section.

The design of such a blowdown tunnel was carried out in some

detail. A compressor was chosen in this design over a flywheel for two

reasons. The first is that the compressor can maintain a closer match

J. in corrected speed compared to the flywheel since with the flywheel, the

-0 .-- ---
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turbine mechanical speed must always increase (if only a small amount),

while with the compressor, the turbine speed can slow to match the drop

in inlet temperature that is inherent to a blowdown from a fixed volume

tank. Thus, the flywheel may be appropriate for a constant inlet

condition scheme such as Figure 5, Nos. 1 & 2, but an energy absorber is

really required for a blowdown. The compressor design proved to be a

problem, however. The problem with the centrifugal compressor is that

the very high work output of the transonic turbine requires a very large

diameter compressor wheel which in itself acts as a large flywheel. As

the compressor diameter passed 1 meter in the design, it was clear that

a safe mechanical design of the rotating system would be very difficult.

(Note that the aerodynamic design is not so difficult since the

compressor efficiency does not effect its power absorption, only the

*pressure rise. The pressure rise does, however, determine the volume of

the dump tank required. The principle aerodynamic design

consideration for the compressor is that the weight flow vs. speed

characteristic match that of the turbine).

* ". Various compressor designs were then attempted including a

- supersonic axial compressor and the adaptation of a muitistage aircraft

engine high compressor. These schemes did not seem to offer much in

reducing either the mechanical complexity or the technical risk of the

project.

Another configuration investigated replaced the compressor with

an eddy current brake. An eddy brake consists of a moving conductor

(metal disk or drum) in an imposed magnetic field. This induces
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secondary currents (eddy currents) in the conductor which opposes the

applied field, thus generating a braking force. The power is

dissipated as heat in the conductor. The eddy brake is attractive

because the braking torque is proportional to the square of the

rotational speed. Thus, an eddy brake coupled to the turbine will, as

the compressor, match the turbine characteristic without the need of a

control system. The eddy brake offered the advantage of a high power

density design-simplifying packaging and rig layout. Unlike a

mechanical friction brake, the eddy brake has no moving parts other

than the conductor and thus relatively few mechanical design problems.

Due to the above potential advantages of the eddy current brake

and also due to the investigators expertise in compressor design and

ignorance of eddy current brakes, the eddy brake configuration was

chosen for the Blowdown Turbine.

Given the selected configuration, and a 0.2 to 0.4 sec. run time

goal, various facility sizes were simulated. Figure 8 illustrates that

for a typical eddy brake configuration facility, the corrected speed

and turbine pressure ratio remain constant to 1% over 0.4 seconds.

Subsystem Detail

Main Valve

A principle component of this facility is the main valve which

separates the supply tank from the test section. The valve must seal

vacuum against 10 atmospheres pressure at 5000 K (500°F), open fully in

50 ms, and provide a smooth disturbance free inflow to the turbine

(Figure 9). The explosively ruptured diaphragm that was used in the MIT

.a
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Blowdown Compressor Facility could not be used here because of the

higher pressure and temperature. The design chosen was the pilot

operated annular plug valve illustrated in Figure 10. The valve is

constructed of steel and is therefore fairly massive (slider weight =

100 Kg). It is designed to operate in thermal equilibrium and is

thus oil heated. Valve dynamics depend upon a 100 mm diameter pilot

pneumatic piston for the initial motion, with the major part of the

opening force coming from the pressure difference between the outside

surface of the slider and the inside damping chamber which is initially

evacuated. As the slider moves, the damping chamber fills through the

orifice flow path and then acts as the damper, slowing the slider to a

stop. To aid in the design, the valve dynamics were simulated on a

computer. Typical predictions from the simulation are presented in

Figure 11. The valve is at its designated open position (i.e. valve flow

area is greater than any downstream flow area) after less than 50 ms.

from initial motion point.

Eddy Brake

The design of the eddy brake has proven to be a considerable

technical challenge. An eddy brake torque vs. speed characteristic is

shown in Figure 12. The Blowdown Turbine must operate on the linear

section of the curve if the power absorbed is to be proportional to the

square of the shaft speed. As the shaft speed increases, the magnitude

*; of the eddy currents increase until at wO , the eddy field is equal

to the applied field. The torque will now decrease with increasing

speed as the eddy field excludes the applied field flux lines.
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The challenge is to design a brake with a critical speed, w0,

above the turbine operating range but which is still capable of

absorbing the requisite power in a reasonable mechanical package. To

simplify the problem, the brake was designed to heat sink the power

produced (1.2 MW for 1 sec.) in the moving conductor. This introduced

an additional design problem since at a given mechanical speed, wo

decreases with increasing conductor thickness. Thus the conductor must

be thick to absorb the power but it must be thin because of the

electrodynamics. The solution adopted was to use a very high

resistivity, high hot strength material in a drum configuration with 10

"horseshoe" electromagnets arranged around the periphery. The design is

summarized in Figure 13. Current from a D.C. source is supplied to the

magnets as the valve is open (the rotor is to already have been brought

to operating speed by a small D.C. motor).

Tanks and Auxiliary Systems

The supply and dump tanks are of carbon steel construction. The

supply tank volume is approximately 14 m3 (365 cu. ft.) and dump tank

volume is 20 m3 (550 cu. ft.). The supply tank is double walled so that

hot oil can be circulated to heat the tank to the desired operating point.

The valve is similarly heated. A silicon rubber insert and a water jacket

on the upstream flange keep the test section at room temperature. A

commercial 80 KW electric oil system heats and circulates the oil. The

facility is illustrated in Figure 14.

Other auxiliary systems include a vacuum pump for evacuating the

tunnel and a gas mixture system required to supply the mixture. The

." ." . - . . • . *
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facility is designed with a 2 to 3 hour recycle time.

Data Acquisition

The data acquisition and analysis system for this facility must

be capable of acquiring data with an information bandwidth of at least

40 kHz from 20 to 100 sensors for at least 0.5 seconds. This implies a

prodigious data rate and volume. No commercial system was capable of

--meeting these requirements at a reasonable price. The preliminary

design of a custom system was performed and its detailed design and

construction contracted out. The system is shown schematically in

Figure 15. It consists of up to 100 separate channels each capable of

digitizing at 200,000 samples/sec. There are also up to 96 lower speed

- channels multiplexed onto 8 high speed channels. The digital output

from these channels is transmitted 200 ft. at an average data rate of

256 Mb/sec. to a 32 M byte semiconductor memory, thus permitting uP to

200,000 data samples on each of 100 channels. The data acquisittil

system is under the control of a local microcomputer. After the test is

completed, the data is read from the memory into a Perkii.-Elmer 3242

computer for analysis. System specifications are summarized in Figure

16. Initially, 25 high speed and 48 low speed channels have been

ordered.

67
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Instrumentation

Flowfield

One of the principle advantages of the scaled blowdown scheme is

that the environment is quite benign when compared with a full scale

turbine. It is in many ways comparable with that of a conventional

compressor and thus most of the standard compressor instrumentation

techniques can be directly applied to the blowdown turbine. The basic

. high frequency technology is the semiconductor diaphragm pressure

transducer such as those manufactured by Kulite, Entran, or Endevco.

- These are incorporated into various probe configurations with net

frequency response in the 10 to 20 kHz range (Figure 17).

Heat Flux

Heat frequency heat flux measurements on the rotor blades are

the first goal of this program. Several alternate techniques have been

considered as summarized in Figure 18. The most promising technique

involves the measurement of the temperature difference across a well

calibrated insulator as shown in Figure 19. Considerable effort will

be spent in developing these techniques.

Conclusions

A Blowdown Turbine Facility has been designed to be capable of

accurate simulation of the fluid physics of high pressure film cooled

turbines. Detailed design and construction of this device will proceed

along with development of the required instrumentation techniques

during the next year.

Uo-
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FIGUIPE 1

BLOWDOWN TURBINE PRIMARY GOALS

-.

* FULL FLUID PHYSICS SIMULATION - RE, M, PR, Ro, T

" TIME RESOLVED MEASUREMENTS - HEAT TRANSFER

- AERODYNAMICS

- SIMULTANEOUS HT & AERO

- COOLING AIR TRANSPORT

. LOW CONSTRUCTION COSTS

" LOW OPERATING COSTS - UNIVERSITY SCALE
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FIGUDPE 3

ARGON-REGRIGERANT MIXTURES: REYNOLDS SIMILARITY

TEST PRESSURES AND SATURATION TEMPERATURES

MIXTURE CONDITIONS AT REYNOLDS SIMILARITY

XR PO~ WpO P R T sat
(psia) (psia) (OF)

R-12 .2554 .2229 64.3 16.4 -17

R- 13

R-13B1 .2690 .2265 65.3 17.6 -65

*R-14 .2936 .2637 76.1 22.3 -187

R-22 .3384 .2294 66.2 22.4 -24

*R-115 .1469 .2484 71.7 10.5 -50
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FIGURE 4

M.IT BLOWDOWN TURBINE SCALING

FULL SCALE MIT BLOWDOWN

FLUID AIR AR - R12

RATIO SPECIFIC HEATS 1.27 1.27

METAL/GAS TEMP RATIO TM/r G  .63 .63

MEAN METAL TEMP, TM 1118K 300K

INLET TOTAL TEMP, TG 1780°K 478°K

COOLING AIR TEMP 790°K 212°K

I AIRFOIL COOLING AIR FLOW 12.5% 12.5%

TRUE NGV CHORD 8,0CM 5,9CM

REYNOLDS NUMBER 2,7x10 6  2.7x10 6

• INLET TOTAL PRESSURE 289 PSIA 64 PSIA

PRANDTL NUMBER .752 .755

d TEST TIME CONT. .2 SEC

POWER PRODUCED 24 MW 1,3 MW

I

I
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FIGURE 7

POWER BALANCE

TURBINE CONNECTED TO EDDY CURRENT BRAKE

TURBINE

2 2
POWER PRODUCED MTIP , N

EDDY BRAKE

22 2

POWER ABSORBED -- B2 U 2 N2

CONCLUSIONS

* BRAKE & TURBINE CHARACTERISTICS MATCH

- NO CONTROL SYSTEM REQUIRED

* MAGNETIC FIELD STRENGTH FINE TUNES BRAKE

q
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FIGURE 9

MAIN FLOW VALVE

FACILITY REQUIREMENTS

* NONRESTRICTING - OPEN 2 FT. DIAMETER

* FAST ACTING - 50MS FULL OPEN

* HIGH TEMPERATURE OPERATION - UP TO 500°F

. EXCELLENT SEALING - VACUUM TO 150 PSIA

DESIGN IMPLEMENTATION

* ANNULAR PLUG DESIGN CHOSEN

. PILOT OPERATED - GAS FLOW PROVIDES OWN FORCE

. CARBON STEEL CONSTRUCTION - OIL HEATED

, ALL SEALS USE "0" RINGS
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FIGURE 13

EDDY CURRENT BRAKE - DESIGN SUMMARY

*-..' Operating Point cu = 662 rad/sec

p = 1.5 x 10 watts

Drum Material INCO 718, a = 0.801 x 10
6 (.Q-m) 1

Geometry Drum Radius, r = .16 cm

Drum Thickness, = .635 cm

Total Air Gap Height, 2g = 1.27 cm

Number of Poles, N 20

Gap to Pitch Ratio = 0.25 (normal)

Resisting Factor ( ) = 0.906
r

Max. Torque
Reynold's Number 0 0.7854(-,= )

Max. Torque Speed 0 = 870 rad/sec (normal)

Power at Max. 6
Torque P0 = 2.045 x 10 watts

Static Field B0 = 0.781 T

Amp. Turns per

Pole I = 7896 amps

Excitation Coils

Time Constant Tc (sec) 0.010 0.020 0.025

Total Power Pc (watts) 47,000 23,500 18,800

"Copper" cross-section A (cm2  1.60 3.21 4.01

.
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FIGURE 16

DATA ACQUISITION- SYSTEM COMPARISON

-iCUSTOM SYSTEM BEST COMMERCIAL SYSTEM

RESOLUTION/CH 12 BITS 10 BITS

MAX SAMPLING RATE 200 KHz 1000 Kpz
APERTURE UNCERTAINTY 100 Ps 100 Ps
LINEARITY 0,.024%, r2.
ABSOLUTE ACCURACY 0,1% 1,0%

SAMPLING MODE SIMULTANEOUS SIMULTANEOUS

GAIN/OFFSET CONTROL FRONT PANEL PCB
CLOCK GENERATOR 4 SPEED! 20 Hz-200 KHz 3 SPEED; 20 Hz-20MHz
CLOCK RESOLUTION INVERSE GEOMETRIC

. SAMPLE SETUP COMPUTER SWITCHES

° MANUAL READOUT COMPUTER DISPLAY OSCILLOSCOPE

TOTAL SAMPLES/CH 400,000 1,000

. . .. . . . . . . ... .... . . . . . . .
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FIGURE 17

PRESSURE-VELOCITY INSTRUMENTATION

* SENSOR TECHNOLOGY - SILICON DIAPHRAGM, STRAIN GAUGE

* WALL STATIC PRESSURE CASING, NGV'S

-"TRAVERSING PROBE - FLOW TOTAL o STATIC PRESSURE, 2 FLOW

ANGLES

- STATIONARY FRAME TRAVERSE

- ROTATING FRAME TRAVERSE (BEHIND ROTOR)

I TECHNIQUES ADAPTABLE FROM COMPRESSOR RESEARCH

(SIMILAR TEMPERATURES & PRESSURES)

'J



141
FIGURE 18

HEAT TRANSFER INSTRUMENTATION (NGV'S AND ROTOR)

ALTERNATE TECHNIQUES AVAILABLE

A. BLADE CALORIMETER APPROACH

* USE BLADE AS CALORIMETER

* MEASURE TEMPERATURE WITH THIN FILM THERMOCOUPLES

. USE 3 -D TRANSIENT HEAT TRANSFER CODE TO REDUCE DATA

ADVANTAGES

* MINIMUM FLOW DISTRUPTION

* INSTRUMENT INDUCED TEMPERATURE ERROR LOW

* SINGLE INSTRUMENTATION MEASURES HIGH & LOW FREQUENCEIES

DISADVANTAGES

" REQUIRES 3-D TRANSIENT HEAT TRANSFER CODE

• LARGE CAPACITY DATA ACQUISITION SYSTEM NECESSARY

" CALIBRATION RELATIVELY DIFFICULT

B. DISCREATE CALORIMETER APPROACH

' DISCREATE CALORIMETERS INSERTED IN BLADES

* CALORIMETERS (1 MM DIAMETER) THERMALLY ISOLATED FROM BLADE

ADVANTAGES

" SIMPLIFIED DATA REDUCTION

* • EASILY CALIBRATED

DISADVANTAGES

* DISTURBS BLADE BOUNDARY LAYERS

, INTRODUCES DOWNSTREAM ERRORS

.• DIFFICULT TO MEASURE HIGH & LOW FREQUENCIES WITH SAME UNIT
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FIGUPE 18

HEAT TRANSFER INSTRUMENTATION (COr'D)

C. THIN FILM HEAT FLUX GAUGES APPROACH

* MULTI LAYER FLUX GAUGES FABRICATED ON BLADE SUJRFACE

S DIFFERENTIAL TEMP MEASUREMENT ACROSS INSULATOR

ADVANTAGES

* MINIMUM FLOW DISRUPTION

, INSTRUMENT INDUCED ERROR LOW

s DIRECT READOUT OF HEAT FLUX

D I SADVANTAGES

. MUST BE VERY THIN FOR HIGH FREQUENCY RESPONSE (1 TO 5uM)

* DIFFICULT TO FABRICATE

1
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FIGUPE 19

THIN FILM HEAT FLUX GAUGE

DESIGN - MEASURE TEMPERATURE DIFFERENCE ACROSS INSULATOR

- SENSORS ARE TEMP. SENSITIVE RESISTORS

CONSTRAINTS - FREQ. RESPONSE LIMITS INSULATOR THICKNESS

- SELF HEATING SETS SENSOR RESISTANCE

TRADEOFFS - SENSITIVITY FOR FREQ, RESPONSE

- RESISTANCE FOR TEMP. COEF,

0.4.11M GAS FLOW
/ SENSOR

2,,IMNSULATOP*

.- 7- SENSOR
"-' ELECTRICAL
...4UM INSULATOR

BLADE SURFACE

*NOT TO SCALE
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